
user manual

theory: basic knowledge
tutorial: general handling/practical exercises
reference book: working with TESSY

release 02/24 | revision 51.006 | TESSY v5.1

Imprint

Razorcat Development GmbH

Witzlebenplatz 4

Germany, 14057 Berlin

tel: +49 (030) 53 63 57 0

fax: +49 (030) 53 63 57 60

e-mail: support@razorcat.com

internet: www.razorcat.com

Windows is a registered trademark of Microsoft. TESSY and CTE are registered trademarks of Ra-

zorcat Development GmbH.

All other registered or unregistered trademarks referenced herein are the property of their respective

owners and no trademark rights to the same is claimed.

Liability exclusion

Razorcat Development GmbH assumes no liability for damage that is caused by improper installation

or improper use of the software or the non-observance of the handling instructions described in this

manual.

Thanks

Various contents are based on application notes and publications on TESSY written by Frank Büch-

ner, Hitex Development Tools GmbH. We would like to thank Frank for his valuable contribution and

commitment in supporting TESSY and spotlighting functionalities and features.

TESSY 5.1 Manual iii

mailto:support@razorcat.com
https://www.razorcat.com

Contents

Preface xiv

About TESSY . xv

How to use this manual . xvi

Subject matter . xvi

Helpers . xviii

Various Boxes - Important or extra information and warnings xx

Safety Manual . xxi

Core workflow and registration for safety information xxi

Verification and certification of TESSY . xxii

Instrumentation for coverage measurement xxiii

Change based testing . xxiii

Adaptation to target environment . xxiv

Command line interface (CLI) . xxiv

Operating limits . xxiv

New features in TESSY 5.0 . xxvi

Linux support . xxvi

New features in TESSY 5.1 . xxvii

Redesigned icons . xxvii

Test Cockpit view . xxvii

Code Access analysis . xxviii

Hyper Coverage . xxix

Changed behavior of Test Project view . xxix

Coverage Reviews . xxx

Test summary report . xxxii

Change based testing . xxxii

1 Installation and registration 1

1.1 Windows installation . 2

1.1.1 Technical requirements . 2

1.1.2 Setup . 2

1.1.3 Installation . 3

1.1.4 Registration . 6

TESSY 5.1 Manual v

Contents

1.1.5 Uninstallation . 16

1.2 Linux installation . 18

1.2.1 Technical requirements . 18

1.2.2 Setup . 18

1.2.3 Installation . 19

1.2.4 X server on headless systems . 20

1.2.5 Registration . 21

1.3 Using a license without connection to the license server (FLS) 22

1.3.1 Checking-out the license for use on your local computer 24

1.3.2 Using a license on a computer with no connection to the license server 25

2 Migrating fromTESSY 4.x to 5.x 26

2.1 Changes as of TESSY v5.1 . 26

2.2 Importing previous projects . 27

3 Theory: Basic knowledge 28

3.1 Unit testing of embedded software . 29

3.1.1 Standards that require testing . 29

3.1.2 About unit testing . 29

3.1.3 Considerations for unit testing . 31

3.1.4 Methods for unit testing . 33

3.1.5 Conclusion . 35

3.2 The Classification Tree Method (CTM) . 36

3.2.1 General . 36

3.2.2 Steps to take . 37

3.2.3 Example is_value_in_range . 43

4 Tutorial: General handling 56

4.1 Creating databases and working with the file system 57

4.1.1 Creating a project database . 58

4.1.2 Creating, importing, cloning, editing, deleting a project 64

4.1.3 Creating a template project . 65

4.1.4 Moving the project directory . 66

4.1.5 Handling with equally named projects 66

4.1.6 Using a specific environment setting 68

4.1.7 Updating the database . 68

4.2 Understanding the graphical user interface . 70

4.2.1 Menu bar . 71

4.2.2 Tool bar . 71

4.2.3 Perspectives and perspective (tool) bar 71

vi TESSY 5.1 Manual

Contents

4.2.4 Views . 72

4.2.5 Status bar . 76

4.3 Using the context menu and shortcuts . 77

4.3.1 Context menu . 77

4.3.2 Shortcuts . 77

5 Tutorial: Practical exercises 80

5.1 Quickstart 1: Unit test exercise is_value_in_range 82

5.1.1 Creating a test project . 83

5.1.2 Specifying the target environment . 85

5.1.3 Adding the test object and analyzing the C-source file 87

5.1.4 Editing the test object interface . 90

5.1.5 Designing test cases . 91

5.1.6 Adding test cases and test steps . 92

5.1.7 Entering test data . 93

5.1.8 Executing the test . 97

5.1.9 Repeating the test run with coverage instrumentation 98

5.1.10 Analyzing the coverage . 100

5.1.11 Creating a Test Details Report . 104

5.1.12 Repeating the test run with requirements 108

5.1.13 Reusing a test object with a changed interface 121

5.2 Quickstart 2: The Classification Tree Editor (CTE) 130

5.2.1 The CTE tree elements . 131

5.2.2 Working with the CTE . 133

5.2.3 Entering test data . 133

5.2.4 Creating test cases . 135

5.3 Quickstart 3: Component test exercise interior_light 143

5.3.1 Creating the test project . 145

5.3.2 The heartbeat function . 146

5.3.3 Preparing the test interface . 149

5.3.4 Adding test cases . 151

5.3.5 Editing data . 152

5.3.6 Configuring the work tasks . 154

5.3.7 Designing scenarios . 154

5.3.8 Executing the scenarios . 160

5.3.9 Evaluating the scenarios . 161

5.4 Quickstart 4: Exercise C++ . 162

5.5 Quickstart 5: Test driven development (TDD) 167

TESSY 5.1 Manual vii

Contents

6 Reference book: Working with TESSY 172

6.1 Menu Bar Entries: Setting up the basics . 177

6.1.1 File menu . 177

6.1.2 Window menu . 178

6.1.3 Static Analysis Settings . 183

6.1.4 Coverage Settings . 184

6.1.5 Metrics Settings . 185

6.1.6 Interface dictionary . 186

6.1.7 Support menu . 188

6.1.8 Help menu . 188

6.2 Overview perspective: Organizing the test . 190

6.2.1 Structure of the Overview perspective 191

6.2.2 Test Cockpit view . 192

6.2.3 Test Project view . 195

6.2.4 Properties view . 246

6.2.5 Requirements Coverage view . 253

6.2.6 Test Items view . 254

6.2.7 Test Results view . 264

6.2.8 Evaluation Macros view . 264

6.2.9 Console view . 265

6.2.10 Suspicious Elements view . 267

6.2.11 Problems view . 267

6.2.12 Variants view . 268

6.2.13 Coverage Reviews view . 273

6.3 C/C++: Editing the C-source . 274

6.3.1 Opening the C/C++ perspective . 274

6.3.2 Structure of the C/C++ perspective . 275

6.3.3 Editor view . 276

6.3.4 Project Explorer view . 278

6.3.5 Outline view . 278

6.3.6 Properties view . 279

6.3.7 Console view . 280

6.4 Requirement management . 281

6.4.1 Structure of the Requirement Management perspective 282

6.4.2 RQMT Explorer view . 284

6.4.3 Requirements List view . 293

6.4.4 Requirement Editor view . 294

6.4.5 Validation Matrix view / VxV Matrix view 297

6.4.6 Test Means view . 298

viii TESSY 5.1 Manual

Contents

6.4.7 Link Matrix view . 299

6.4.8 Suspicious Elements view . 304

6.4.9 Attached Files view . 309

6.4.10 Attributes view . 310

6.4.11 History view . 313

6.4.12 Differences view / Reviewing changes 314

6.4.13 Related Elements view . 316

6.4.14 Problems view . 317

6.4.15 Document Preview . 317

6.4.16 Requirements Coverage view . 320

6.5 TEE: Configuring the test environment . 325

6.5.1 Starting the TEE perspective . 326

6.5.2 Structure of the TEE . 327

6.5.3 All Environments view . 328

6.5.4 Projects Environments view . 330

6.5.5 Attributes view . 332

6.5.6 Configuration files . 334

6.5.7 Adjusting enabled configurations . 335

6.6 THAI: TESSY Hardware Adapter Interface . 339

6.6.1 The THAI Configuration file . 340

6.6.2 Environment Editor (TEE) Settings for THAI functionality 341

6.6.3 Signals within the interface . 343

6.6.4 Entering test data for signals . 344

6.7 TIE: Preparing the test interface . 345

6.7.1 Structure of the TIE perspective . 346

6.7.2 Test Project view . 346

6.7.3 Properties view . 346

6.7.4 Interface view . 347

6.7.5 Plot Definitions view . 368

6.8 CTE: Designing the test cases . 373

6.8.1 The basic idea . 373

6.8.2 Structure of the CTE perspective . 374

6.8.3 Test Project view . 374

6.8.4 Properties view . 375

6.8.5 Outline view . 375

6.8.6 Classification Tree editor . 375

6.8.7 Test Data view . 396

6.8.8 Dependencies in CTE . 401

TESSY 5.1 Manual ix

Contents

6.9 TDE: Entering test data . 407

6.9.1 Structure of the TDE perspective . 407

6.9.2 Test Project view . 409

6.9.3 Test Results view . 409

6.9.4 Evaluation Macros view . 409

6.9.5 Test Items view . 409

6.9.6 Properties view . 410

6.9.7 Test Data view . 411

6.9.8 Test Definition view . 435

6.9.9 Call Trace view . 436

6.9.10 Declarations/Definitions view . 437

6.9.11 Prolog/Epilog view . 438

6.9.12 Stub Functions view . 448

6.9.13 Usercode Outline view . 453

6.9.14 Plots view . 455

6.9.15 Plot Definitions view . 456

6.10 Script Editor: Textual editing of test cases . 457

6.10.1 Structure of the Script Editor perspective 458

6.10.2 Script Editor related Icons of the main tool bar 458

6.10.3 Editing test objects, test cases and test steps 459

6.10.4 Script states . 461

6.10.5 The Script Editor Outline view . 461

6.10.6 Synchronization with the internal model 462

6.10.7 Merging script contents . 462

6.10.8 Importing and exporting script contents 464

6.10.9 Importing and exporting script contents 464

6.10.10Script examples . 464

6.11 CV: Analyzing the coverage . 469

6.11.1 Structure of the CV perspective . 470

6.11.2 Instrumentation for coverage measurements 471

6.11.3 Test Project view . 473

6.11.4 Called Functions view/Code view . 474

6.11.5 Flow Chart view . 475

6.11.6 Fault injection . 484

6.11.7 Statement (C0) Coverage view . 485

6.11.8 Branch (C1) Coverage view . 487

6.11.9 Decision Coverage view . 488

6.11.10MC/DC Coverage view . 488

6.11.11 MCC Coverage view . 490

x TESSY 5.1 Manual

Contents

6.11.12Call Pair Coverage view . 490

6.11.13Coverage Reviews view . 491

6.11.14Coverage Report views . 495

6.12 IDA: Assigning interface data . 496

6.12.1 Structure of the IDA perspective . 497

6.12.2 Status indicators . 497

6.12.3 Test Project view . 498

6.12.4 Properties view . 498

6.12.5 Compare view . 498

6.13 SCE: Component testing . 503

6.13.1 Creating component tests . 504

6.13.2 Preparing the test interface . 507

6.13.3 Configuring the work tasks . 508

6.13.4 Designing the test cases . 510

6.13.5 Editing scenarios . 511

6.13.6 Executing the scenarios . 516

6.14 Fault injection . 517

6.14.1 Managing fault injections in the Coverage Viewer 517

6.14.2 Creating fault injection test cases . 518

6.14.3 Creating and editing fault injections in the Coverage Viewer 520

6.14.4 Fault injections within the report . 522

6.15 Mutation testing . 523

6.15.1 Preferences . 524

6.15.2 Test execution settings . 526

6.15.3 Mutation view . 527

6.16 Backup, restore, version control . 530

6.16.1 Backup . 530

6.16.2 Restore . 533

6.16.3 Version control . 535

6.17 Command line interface . 538

6.17.1 Starting TESSY in headless mode . 538

6.17.2 Invoking “tessycmd.exe” . 539

6.17.3 Usage of “tessycmd.exe” . 540

6.17.4 Commands . 541

6.17.5 Execution and result evaluation . 541

6.17.6 Headless operation . 542

6.17.7 Example: DOS script . 543

TESSY 5.1 Manual xi

7 Troubleshooting 544

7.1 Contacting the TESSY support . 545

7.1.1 Creating the TESSY Support File . 545

7.1.2 Tipps for a better TESSY Support File 547

7.2 Enhanced error handling . 549

7.2.1 Problems Log dialog . 549

7.2.2 Problems view . 551

7.2.3 Opening external problem logs using the Support menu 552

7.3 Solutions for common problems . 555

7.3.1 TESSY does not start or gives errors when starting 555

7.3.2 License server does not start or gives errors 556

7.3.3 Working with constant variables . 558

7.3.4 Dealing with too long project paths . 562

Appendix 564

A Abbreviations 565

B Glossary 567

C List of Figures 572

D List of Tables 585

Index 589

xii TESSY 5.1 Manual

Preface

About TESSY xv

How to use this manual xvi

Subject matter . xvi

Helpers . xviii

Various Boxes - Important or extra information and warnings xx

Safety Manual xxi

Core workflow and registration for safety information xxi

Verification and certification of TESSY . xxii

Instrumentation for coverage measurement . xxiii

Change based testing . xxiii

Adaptation to target environment . xxiv

Command line interface (CLI) . xxiv

Operating limits . xxiv

New features in TESSY 5.0 xxvi

Linux support . xxvi

New features in TESSY 5.1 xxvii

Redesigned icons . xxvii

Test Cockpit view . xxvii

Code Access analysis . xxviii

Hyper Coverage . xxix

Changed behavior of Test Project view . xxix

Coverage Reviews . xxx

Test summary report . xxxii

Change based testing . xxxii

xiv TESSY 5.1 Manual

About TESSY

About TESSY

The test system TESSY was developed by the Research and Technology Group of Daimler.

The former developers of the method and tool at Daimler were:

Klaus Grimm

Matthias Grochtmann

Roman Pitschinetz

Joachim Wegener

TESSY has been well-tried in practice at Daimler and is since applied successfully. TESSY is

commercially available since spring 2000 and is further developed by Razorcat Development

GmbH.

TESSY offers an integrated graphic user interface conducting you comfortably through the

unit test. There are special tools for every testing activity as well as for all organizational and

management tasks.

Dynamic testing is indispensable when testing a software system. Today, up to 80% of the

development time and costs go into unit and integration testing. It is therefore of urgent

necessity to automate testing processes in order to minimize required time and costs for

developing high-quality products. The test system TESSY automates the whole test cycle;

unit testing for programs in C/C++ is supported in all test phases. The system also takes

care of the complete test organization as well as test management, including requirements

coverage measurement and traceability.

TESSY 5.1 Manual xv

Preface

How to use this manual

The TESSY User Manual provides detailed information about the Installation and registration

of TESSY, Theory: Basic knowledge about testing, Tutorial: General handling and Reference

book: Working with TESSY. (Please study the list under Subject matter for more details about

the different chapters in this manual.)

There is also a chapter Tutorial: Practical exercises containing five basic examples of pos-

sible ways to operate with TESSY. We strongly recommend to work through these practical

exercises as they are also a perfect quickstart to TESSY!

Apply for our e-mail list if you want to be informed of a new version of TESSY manual

by sending an e-mail to support@razorcat.com.

Refer as well to our detailed application notes regarding compiler/target settings and

other specific themes that are available in the Help menu of TESSY (“Help” > “Doc-

umentation”).

Find some videos about TESSY features as well as support videos on our website

https://www.razorcat.com/en/tessy-videos.html.

Subject matter

The structure of the manual guides you through working with TESSY from the start to the
specific activities possible. In order:

Section Matter

Preface Describes New features in TESSY 5.0 and New features in TESSY

5.1, also contains the Safety Manual.

1 Installation and

registration

Lists all technical requirements to work with TESSY and describes

how to install the software.

continue next page

xvi TESSY 5.1 Manual

mailto:support@razorcat.com
https://www.razorcat.com/en/tessy-videos.html

How to use this manual

Section Matter

3 Theory: Basic

knowledge

Contains a brief introduction about unit testing with TESSY and the

classification tree method (CTM).

4 Tutorial:

General

handling

Explains the workflow of Creating databases and working with the

file system. Check this section carefully to know how to handle your

project data! The TESSY interface and basic handling is explained

in the following sections Understanding the graphical user interface

and Using the context menu and shortcuts.

5 Tutorial:

Practical

exercises

In this chapter you will get to know TESSY with the help of
exercises that are prepared to follow easily though most of the
TESSY functions:

Quickstart 1: Unit test exercise is_value_in_range is a very ba-

sic example to give you a fast introduction.

Quickstart 2: The Classification Tree Editor (CTE) gives a short

and easy introduction of handling with the Classification Tree

Editor (CTE). It continues the Quickstart 1: Unit test exercise

is_value_in_range.

Quickstart 3: Component test exercise interior_light gives you a

complete overview about working with TESSY, including all main

functions of unit testing, e.g. requirement management.

Quickstart 4: Exercise C++ gives gives a short and easy introduction

of the handling of TESSY with a C++ source file.

Quickstart 5: Test driven development (TDD) gives a short intro-

duction into test driven development with TESSY. You should be

familiar with the overall handling of TESSY before doing this exercise.

We strongly recommend to work though the practical

exercises as a quickstart to TESSY!

Learning by doing is much easier than learning by just

reading. So exercise first and then check the detailed

information in the corresponding section of chapter

“Reference book: Working with TESSY”.

continue next page

TESSY 5.1 Manual xvii

Preface

Section Matter

6 Reference

book: Working

with TESSY

This chapter explains in detail the unit test activities possible
with TESSY.

You will notice that the headlines of the sections follow the ac-

tions taken during a test. TESSY provides different editors and

windows (“perspectives” and “views”) for different configurations and

steps taken during and after a test. You will find the name of the

perspective or view as well as the description of the step within the

headline, e.g. 6.8 CTE: Designing the test cases.

Therefore, if you need help at some point, ask either “How do I

handle …?” or “Where am I?” and follow the headlines.

Important: Read the Tutorial: General handling first,

because basic functions of each editor are explained

there.

7 Troubleshooting Contains information of Solutions for common problems and how to

get in touch with the TESSY support if needed.

Appendix Contains a List of Figures, a List of Tables, a list of used Abbreviations

as well as definitions of used terms in the Glossary. Please check

the glossary when you need some explanations of terms!

The Index in the very end of this manual provides the positions of

your theme of interest with the help of alphabetically listed keywords.

Table 0.1: Where to find - matters of the several parts of the TESSY manual

Helpers

• The Index in the very end of this manual helps you finding topics with the help of

keyword.

• Various information is clearly represented within tables, e.g. icons and indicators (sym-
The sidearrow

shows where to
find information
and references. bols of the interface) and their meanings. For a fast access to all tables consult the List

of Tables in the appendix of this manual.

• Figures are used to demonstrate described information. You may as well check the List

of Figures in the appendix to find those figures.

xviii TESSY 5.1 Manual

How to use this manual

• Cross references as well as the content directory are active links (blue colored), which

makes it easy to switch to the referenced chapter or section.

Font characters and signs

To help you to work with this manual, different font characters and signs are used to mark
specific information:

Font character /
Sign

Used for Example

Þ instructions you are sup-

posed to follow immediately

Þ Open the TESSY interface.

> navigation through a menu Þ Select “File” > “Open…”

[…] variable Þ Switch to “[project root]\tessy”

bold accentuation E.g. Important: …

typewriter
italic

input (you need to type

this information) or output

(message from system)

Enter Test Example.

“typewriter in
quotes”

path of data “C:\Program Files\Razorcat”

“quotes” indicate keys, buttons, etc. Þ Select “File” > “Open…”

Ctrl+C Keyboard characters are

not marked on the assump-

tion that they are commonly

known.

Ctrl+C for pressing control and c

Table 0.2: Font characters

TESSY 5.1 Manual xix

Preface

Various Boxes - Important or extra information and warnings

General information:

Gray bordered information boxes

provide further information and explanations for the respective issues and operations

to be executed. The information will give you an overview, while the practical part is

explained in the following section.

Information about the handling of TESSY:

Important: You urgently need to know this for operating correctly!

Warning: There might be some damages to your data if you do not operate cor-

rectly! Please follow instructions carefully.

A light bulb provides hints, references and additional information on handling with

TESSY for better usability.

xx TESSY 5.1 Manual

Safety Manual

Safety Manual

Core workflow and registration for safety information

Important: If you work with TESSY in a safety-relevant environment, please read

this chapter carefully and register for our safety customer e-mail-list to be informed

about known problems as described below!

TESSY can be used for testing of safety-relevant software. Therefore, the core workflow of

TESSY as well as the release and test process of the TESSY product has been certified

according to ISO 26262-08:2018 and IEC 61508-3:2010. In the course of the re-certification

of TESSY 4.1 by TÜV SÜD Rail GmbH the certification was extended to also cover EN 50128

and IEC 62304. Our quality management system ensures proper handling of all development

processes for the TESSY product and constantly improves all procedures concerning quality

and safety.

Figure 0.1: Core workflow of TESSY

The figure above shows the core workflow of TESSY that is fully automated and subject to

tool qualification. All other tool capabilities like editing or environment and interface settings

are additional features out of scope of the tool qualification. The core workflow of TESSY

has been certified according to ISO 26262:2011 and IEC 61508:2010 as well as EN 50128

TESSY 5.1 Manual xxi

Preface

and IEC 62304. Starting from editing of test data, the core workflow covers test execution,

evaluation of test results and report generation. Additionally, the coverage measurements

have been verified according to our certified safety plan. Please note, that the Classification

Tree Editor (CTE) which covers test preparation activities is not part of the certified core

workflow of TESSY.

Safety-relevant problems arising in released TESSY versions will be reported (once they are

detected) and regarded closely to have them fixed as fast as possible. If you work withTESSY

in a safety-related environment, please register for our safety customer e-mail-list:

Þ Send an e-mail to support@razorcat.com

Þ Topic: “Known problems requested”

Þ Content: your contract data

You will be informed about current and newly arising “known problems” as well as work-

arounds.

Verification and certification of TESSY

The “Tool Qualification Pack” (TQP) is an additional purchase of documents and tests for

TESSY, provided as baseline for the certification process in order to qualify TESSY as a

software verification tool according to DO-178B/C.

Please contact via support@razorcat.com.

Additionally, TESSY has been qualified by the German certification authority TÜV SÜD Rail

GmbH as a testing tool for usage in safety-related software development according to ISO

26262 and IEC 61508. TESSY was also evaluated against IEC 62304 (medical technology)

and EN 50128 (railway technology). EN 50128:2011 is an application standard derived from

IEC 61508. TESSY was classified as a T2 offline tool in accordance with EN 50128:2011. The

TÜV certificate and a certification report is available on www.razorcat.com.

The TQPack contains tests for ANSI-C compliant source code using the GNU GCC compiler

that is part of the TESSY installation. Using an embedded compiler/debugger for a specific

microcontroller requires adaptation of the TQPack for this specific target environment. This

can be provided as an engineering service by Razorcat.

xxii TESSY 5.1 Manual

mailto:support@razorcat.com
mailto:support@razorcat.com
https://www.razorcat.com

Safety Manual

Instrumentation for coverage measurement

When executing tests using coverage measurements, it is recommended that all tests are ex-

ecuted once with and once without coverage instrumentation. This can easily be achieved us-

ing the additional execution type “Run without instrumentation” for the test execution. TESSY

uses a copy of the original source file when creating the test application. This copy of the

source file will be instrumented for coverage measurements. Usually both test runs yield the

same result, indicating that the instrumentation did not change the functional behavior of the

test objects.

Please note, that the source code will be instrumented even if no coverage measurement

has been selected in the following cases:

• When using the call trace feature

• When using static local variables

Some extra code will be added at the end of the copied source file in the following cases:

• When testing static functions

• When using static global variables

Please keep this behavior in mind when preparing and executing tests with TESSY.

Change based testing

Change based testing can dramatically reduce the test execution time especially within the

context of continuous integration and testing (e.g. when using CI servers like Jenkins). When

using this test execution option, unchanged tests and unchanged test objects will be skipped

and the test results will be kept from the previous test execution.

Please note that even though the original and the preprocessed source code of each test

object will be examined for any changes, other dependent code may be present which might

have been changed and which could possibly influence the outcome of the test (e.g. the

code of inline functions within header files may have changed which will not be detected as a

source code change). Such potential weaknesses of the change detectionmay be acceptable

for continuous integration and testing compared to the reduction of test execution time.

Nevertheless, for certification testing purposes, it is recommended to completely run all tests

without the “Skip test objects with valid results” option on a regular basis in order to ensure

that all tests are still passing with the current version of the source code.

TESSY 5.1 Manual xxiii

Preface

Adaptation to target environment

When running tests on a specific target platform, adaptations of compiler options and target

debugger settings may be needed within the respective target environment. The verification

of theTESSY core workflow covers tests conducted on aWindows host system using theGNU

GCC compiler. In order to verify the transmission of test data and expected results to and

from the target device, there are tests available that may be executed using the adapted target

environment. These tests check the communication layers of the test driver application.

For details on how to run these tests refer to the application note “048 Using Test

Driver Communication Tests.pdf” within the TESSY installation directory.

It is recommended to run these tests with your specific compiler/target environment after

initial project setup or after any changes of the environment settings.

Command line interface (CLI)

The command line execution mode ofTESSY is designed for usage on continuous integration

platforms like e.g. Jenkins. Therefore it is desired that TESSY does an auto-reuse of existing

tests on interface changes and tries to execute as many tests as possible with newer versions

of the source code being tested when running in CLI mode.

As a result, the tests executed in CLI mode may be run with test data that do not match with

the source code being tested (e.g. with uninitialized new variables) which could hide existing

or newly introduced errors within that source code. It is recommended to regularly check that

the existing tests still match with the interface of the software being tested.

Operating limits

TESSY is constructed for usage as a unit testing tool in order to verify the functional cor-

rectness of the function under test. The following restrictions and prerequisites for TESSY

apply:

• The source code to be tested shall be compilable without errors and warnings by the

compiler of the respectivemicrocontroller target. TESSYmay fail analyzing the interface

of the module to be tested, if there are syntactical errors within the source code.

xxiv TESSY 5.1 Manual

Safety Manual

• TESSY does not check any runtime behavior or timing constraints of the function under

test.

• The test execution on the target system highly depends on the correct configuration of

the target device itself, the correct compiler/linker settings within the TESSY environ-

ment and other target device related settings within TESSY (if applicable). Any prede-

fined setup of the TESSY tool for the supported devices requires manual review by the

user to ensure proper operation of the unit testing execution.

• The usage of compiler specific keywords and compiler command line settings may

require additional tests for tool qualification. Correct operation of the TESSY toolset

with respect to the Qualification Test Suite (QTS) test results is only provided for ANSI

compliant C code.

Since TESSY 4.x the test driver code will be generated and attached at the end of (a copy

of) each source file. This also applies to TESSY 5.x.

The following restrictions apply:

• All types used within usercode must be available within the source file of the respective

test object.

• When using usercode definitions/declarations on module level, all used types must be

available within all source files of the module.

TESSY 5.1 Manual xxv

Preface

New features in TESSY 5.0

Linux support

TESSY is now available also for Linux platforms, starting with Ubuntu 20.04. Legacy versions

will not be supported officially.

Further Linux distributions will be supported successively on demand.

Linux compiler and target environments

Initially, the Linux version of TESSY supports the GNU/GCC compiler and Eclipse debugger

as target environment. Further compiler and target environments that are available on Linux

will be supported successively on demand.

xxvi TESSY 5.1 Manual

New features in TESSY 5.1

New features in TESSY 5.1

Redesigned icons

TESSY 5.1 comes with a reworked icon design for all existing perspectives and views as well

as for the newTest Cockpit view. The new layout of the coverage icons requires less space so

that all coverage columns within the Test Cockpit and Test Project view became narrower.

Test Cockpit view

The new Test Cockpit view provides an overview of all source files located within the project

root or source root directory of a TESSY project. Both, the results of executed tests as well

as the achieved coverage results are summarized on source file level.

Figure 0.2: The new Test Cockpit view in TESSY 5.1

More detailed information is provided in subsection 6.2.2 Test Cockpit view.

TESSY 5.1 Manual xxvii

Preface

Also the test progress will be available within the Test Completion Rate column which lists the

number of test objects that need to be executed, either for the first time or due to changes of

tests or source code.

TESSY already provides automated analysis of tested source code variations after the setup

of tests. Any untested code line will be revealed without further effort of the tester even before

starting any test run.

After test execution, the coverage measurement results will be accumulated for each function

or method within the source files in order to reveal any unreached source code lines.

Code Access analysis

The new Code Access feature automatically detects hidden or untested code in all variants

in the source code under test. While analyzing a module, TESSY calculates checksums for

source files and preprocessed source files in order to detect variations of source code. As a

result, the Test Cockpit view shows source files with all their tested variations.

Figure 0.3: Code Access example

After analysis of all modules, the source code view within the Coverage Viewer perspective

highlights any source code lines that are not accessed within any of the source code varia-

tions being tested with the existing modules (i.e. due to preprocessor directives hiding them

xxviii TESSY 5.1 Manual

New features in TESSY 5.1

within the preprocessed code). This result is already available after creation and analysis of

modules, so that testers have a quick overview after setting up tests if there are any untested

parts of the source code.

Hyper Coverage

The new Hyper Coverage features provides accumulation of coverage results across differ-

ent tests, testing levels and test tools. The Hyper Coverage applies the normal coverage

measurements (e.g. branch or MC/DC coverage) to create a relation between the measured

coverage results with respect to the different code variations. The existing bounds of cover-

age measurements for different code variants were overcome which allows an accumulation

of coverage based on the original source code lines.

Figure 0.4: Hyper Coverage example

The Test Project view is now dedicated for working with test objects whereas the Test Cockpit

view summarizes all results and coverage for each of the test objects within the source files.

Selections in both views are synchronized in a way that related test objects will be revealed

when selecting elements in either one of both views.

Coverage results from different unit and component tests will be combined so that it is easier

now to reach full coverage for all test objects as they are displayed with their summarized

results within the Test Cockpit view.

Changed behavior of Test Project view

The new default setting for theTest Project view ignores the coverage results for the test result

status icons of test collections, folders, modules and test objects. The coverage results will

still be summarized up to the test collection within the coverage columns but the test result

excludes the achieved coverage.

TESSY 5.1 Manual xxix

Preface

Figure 0.5: New Test Project view

This setting can be changed within the preferences to revert to the legacy behavior.

Also the module analysis will now only discard results shown within the Test Project view.

Any results for unchanged test objects will still be available within the Test Cockpit view even

after a module analysis. This setting can also be changed to the legacy behavior within the

preferences.

Messages within the Test Cockpit view will provide information about results being kept:

Figure 0.6: Messages in the Test Cockpit view

For more information please refer to subsection 6.2.3.4 Changed behavior of the Test Project

view (as of TESSY 5.1).

Coverage Reviews

The new coverage review feature supports handling of unreached source code lines when

measuring code coverage using the new Code Access (CA) and Hyper Coverage (HC) fea-

tures. Source code lines can be marked with predefined as well as arbitrary comments for

documentation of why they cannot be reached. Typical situations are hidden debug code or

unreachable default branches.

xxx TESSY 5.1 Manual

New features in TESSY 5.1

Figure 0.7: New coverage reviews

More information is provided in subsection 6.11.13 Coverage Reviews view.

The Coverage Reviews view within the Coverage Viewer (CV) perspective lists the reviews

for each source file. New coverage reviews can be added using the source code view that

highlights any unreached code lines.

Figure 0.8: Editing the coverage review properties

TESSY 5.1 Manual xxxi

Preface

The reviewed source code lines will be added to the Code Access (CA) and Hyper Coverage

(HC) measurement so that it is always possible to reach full coverage by using the standard

coverage measurements in combination with the coverage reviews. All coverage reviews will

be documented within the test summary report.

Test summary report

The new test summary report replaces the former test overview report. It provides the con-

densed summary of the current status of the test project based on the tested source files

showing test and coverage results as well as coverage reviews.

Figure 0.9: The new test summary report

The test summary report XML file contains checksums of all test objects together with the

current test results. Such an XML file can be loaded as base summary for subsequent test

runs so that it is possible to execute only changed test objects.

Change based testing

When testing new versions of a source code, former results for unchanged source code

parts will automatically be reused and displayed within the Test Cockpit view. The analysis

of a module may discard the existing results within the Test Project view but they will still be

applied for unchanged test objects within the Test Cockpit view.

xxxii TESSY 5.1 Manual

New features in TESSY 5.1

For test execution, you can decide to run only tests where the tests objects have been

changed or tests that have been updated since the last execution:

Figure 0.10: Editing the test execution settings

Necessary information about former results is retrieved from test summary report XML files.

Any old test summary report XML file can be loaded as baseline for tests and test objects.

This feature can dramatically reduce the test execution time for recurring continuous testing

on CI systems because only changed tests or code parts will be tested again.

TESSY 5.1 Manual xxxiii

1 Installation and registration

1.1. Windows installation 2

1.1.1. Technical requirements . 2

1.1.2. Setup . 2

1.1.3. Installation . 3

1.1.4. Registration . 6

1.1.5. Uninstallation . 16

1.2. Linux installation 18

1.2.1. Technical requirements . 18

1.2.2. Setup . 18

1.2.3. Installation . 19

1.2.4. X server on headless systems . 20

1.2.5. Registration . 21

1.3. Using a license without connection to the license server (FLS) 22

1.3.1. Checking-out the license for use on your local computer 24

1.3.2. Using a license on a computer with no connection to the license server 25

TESSY 5.1 Manual 1

1 Installation and registration

1.1 Windows installation

1.1.1 Technical requirements

• Windows 10 (64bit), Windows 8 (64bit) or Windows 7 (64bit).

• TESSY 5.x can be installed and run in parallel to any previous major TESSY version.

• To be able to openTESSY documentation files and enable the generation of test reports

in PDF format you need to install a third party PDF viewer like Adobe Reader 7.0 or

higher, Sumatra PDF, Foxit etc.

If you are using Windows 10, please remember to associate PDF files with

your third party PDF viewer.

• To run TESSY 5.x you need at least a 1.5 GHz CPU and 4 GB RAM for TESSY.

Important: Since TESSY 4.1 and later it is 64bit only! Please make sure the

computer you want to use is running on a 64bit version of Windows.

Older TESSY versions can be installed on Windows PCs with 32bit or 64bit.

1.1.2 Setup

Warning: Deactivate your firewall or virus scanner temporarily while installing

TESSY! Otherwise the firewall can cause problems during the installation. Note

that some firewalls and anti-virus software can limit the functionality of applications,

including TESSY and might need to be modified. For further help ask the producer

of the firewall or anti-virus software.

Important: You need local administrator privileges to install TESSY!

TESSY allows you to have multiple TESSY installations with different versions on the same

computer. You do not have to uninstall older versions.

2 TESSY 5.1 Manual

1.1 Windows installation

1.1.3 Installation

To install TESSY 5.x on your computer,

Þ download TESSY from the ”Downloads“ section of the RAZORCAT webpage

(www.razorcat.com).

Þ After the download is complete click on the setup.exe.

The InstallAware Wizard will start. This will take a few moments.

Þ When the InstallAware Wizard is ready, click “Next”.

Download

TESSY

Figure 1.1: InstallAware Wizard

Þ Read the license agreement carefully. Check the box to accept and click “Next”.

Þ Now select the setup type: “Complete” (default) is recommended. click “Next”.

Þ Select the destination folder (default “C:\Program Files\Razorcat”). TESSY will be

installed in a subdirectory containing the version, e.g. TESSY_5.1.

TESSY 5.1 Manual 3

https://www.razorcat.com

1 Installation and registration

Figure 1.2: Destination Folder

Þ Select the TESSY testarea folder (“Folder for temporary files:”; default “C:\tessy”) click
“Next”.

Figure 1.3: TESSY Testarea Folder

Þ Start the installation by clicking “Next”.

4 TESSY 5.1 Manual

1.1 Windows installation

Figure 1.4: Start the installation

The installation will take a few moments.

Figure 1.5: Installing process of TESSY

Þ When the Install Aware Wizard is completed, click “Finish”.

TESSY 5.1 Manual 5

1 Installation and registration

Figure 1.6: Installation is completed

Now you have completed the installation of TESSY.

1.1.4 Registration

1.1.4.1 Requesting a license key

Þ Start TESSY by clicking “Start” in Windows > “TESSY 5.x” > “TESSY 5.x” (see fig.

1.7).

Figure 1.7: Starting TESSY 5.x

6 TESSY 5.1 Manual

1.1 Windows installation

If a valid license is found, TESSY will start. If there is no valid license, the License Manager

will start with a License Key Request popup window (see figure 1.9).

Important: To request a TESSY license you need access to the internet!

To start the request manually,

Þ start the License Manager similarly to starting TESSY by clicking “Start” in Windows

> “Razorcat Floating License Server 8.x” > “Floating License Manager”.

Þ Click on “License” > “Request” (see figure 1.8).

License key

request

Figure 1.8: Starting the key request

The License Key Request popup window will appear (see figure 1.9).

TESSY 5.1 Manual 7

1 Installation and registration

Figure 1.9: License key request popup window

Þ Click on “Online Request” and fill out the form for a license key request.

8 TESSY 5.1 Manual

1.1 Windows installation

Figure 1.10: Form for the license key request

You will get a license key via e-mail within a license key file. The license key file is a plain text

file with the ending .txt.

Important: The license key file is not generated and send out automatically, there-

fore it can take up to a workday until you receive it!

1.1.4.2 Registering the license

TESSY offers two types of licenses:

• Node-locked license

• Floating license

TESSY 5.1 Manual 9

1 Installation and registration

The node-locked license is a single user license issued for a given host ID. It’s not possible to

share the license with other users within your network. A node-locked license operates only

on the particular computer for which the license is issued.

The floating license is a server license issued for a given host ID for a dedicated server within

your network. It’s possible to share the license with other users within your network.

The Floating License Server (FLS) is running on a central network server and manages the

licenses that are in use. Thus TESSY can be used on any computer within the network.

The number of users who can use the software simultaneously is determined by how many

licenses you have purchased.

The License Manager (FLM) is started locally on a computer and displays the state of the

FLS (e.g. how many licenses are currently checked out).

If you want to run TESSY with a time limited demo license, just follow the instructions

in Registering a node-locked license on one computer. The License Manager (see

figure 1.14) will keep you informed about the validity of your license key.

Warning: The registry entries for TESSY’s Floating License Server (FLS) are gen-

erated during installation and must not be altered manually! Otherwise your host

ID and therefore the license key might become invalid.

During the installation the FLS needs an operational Ethernet network interface. The FLS

may not be used as a floating license server but as a node-locked license server only if a

proper Ethernet network interface is missing.

The tool “hostid.exe”, which can be found in the FLS installation folder, outputs the

current status if called with option “-f”.

If the host ID was destroyed for some reason, you can reinstall the license server. The installer

will repair the corresponding registry entries and generate a new host ID.

Please keep inmind, that the last operational host ID is saved in the registry as well. Therefore

you should not delete the registry manually before reinstalling the license server.

After startup the license server will generate a special key which you can sent to repair@ra-

zorcat.com in order to receive a new license file.

10 TESSY 5.1 Manual

mailto:repair@razorcat.com
mailto:repair@razorcat.com

1.1 Windows installation

1.1.4.3 Registering a node-locked license on one computer

When you have received the license key file (*.txt file), Node-locked

license
Þ open the License Manager by clicking “Start” in Windows > “Razorcat Floating Li-

cense Server 8.x” > “Floating License Manager”.

Þ In the opening popup window click on “Done”. (see figure 1.9)

The Configure window for the License Server will open (see figure 1.11).

Figure 1.11: Configure menu of the license server

Þ Under “Run Local Server” click “as Application” (default).

Þ Under “License Key File” choose the license key file (*.txt) you have received.

Þ Tick the box “Autostart” to automatically start the license server in the background when-

ever the computer starts. The system will try to set the autostart for the actual Windows

user.

Þ Click “OK”.

The license server will start automatically and the License Manager (see figure 1.14)

will display information about your license, server and registration.

If the license server does not start, click on “Start Local Server” in the License

Manager.

TESSY 5.1 Manual 11

1 Installation and registration

Þ Close the LicenseManager and start TESSY by clicking “Start” inWindows > “TESSY

5.x” > “TESSY 5.x” (see fig. 1.7).

Optionally you can run the license server as service. In this case the autostart will be set for

the computer and all its users.

Important: Please note: You need administrator privileges to run the license

server as service.

Þ Select “Service” under “Run Local Server”.

Þ Then follow the further instructions as described above.

1.1.4.4 Registering a floating license for network usage

The floating license is a server license issued for a given host ID for a dedicated server within

your network. It’s possible to share this kind of license with other users within the respective

network.

Important: Make sure that the license you want to use for the following process

really is a floating license not a node-locked license.

To run a central license server within your network, please take the following steps:Floating license

Þ Login as administrator.

Þ Install the Floating License Server (FLS) on your network server.

You can download the latest standalone version of the Razorcat FLS from

https://www.razorcat.com/de/downloads-tessy.html.

Important: This download is a standalone setup for the FLS and it is used

for server installations without using a TESSY setup.

Þ Start the License Manager by clicking “Start” in Windows > “Razorcat Floating Li-

cense Server 8.x” > “Floating License Manager”.

Þ Click on “Configure” in the toolbar.

The following dialog window will pop up. Please choose following options within the

dialog to run the license server as service (see fig. 1.12).

12 TESSY 5.1 Manual

https://www.razorcat.com/de/downloads-tessy.html

1.1 Windows installation

Figure 1.12: Settings for a floating license in the configure menu

Þ Under “License Key File” choose the license key file (*.txt) you have received.

The license key file will be copied into the bin directory of the license server installation.

Please check if the license file has been copied after completing these steps.

Þ Click on “OK”.

The license server will start automatically and the License Manager (see figure 1.14)

will inform you about the configuration changes you have just made.

Important: Make sure that the license key file can be found in the bin

directory of the license server. If not, it needs to be copied to this place.

TESSY 5.1 Manual 13

1 Installation and registration

1.1.4.5 Selecting a license server for a network computer

To be able to work with TESSY on various computers within one network you have to select

the floating license server on every single computer you want to use TESSY.

Selecting a floating license on one network computer:

Þ Start the License Manager by clicking “Start” in Windows > “Razorcat Floating Li-

cense Server 8.x” > “Floating License Manager”.

Þ Then click “License” > “Server”.

The following dialog window will pop up.

Figure 1.13: Dialog window to select license server in a network

Þ Under “Address” insert the license server name or IP address within your network.

Þ Click “OK”.

1.1.4.6 Updating a Floating License Server (FLS)

During the process of updating TESSY it is possible that TESSY also requires an updating of

the Razorcat Floating License Server (FLS) on your network server and an updated license

key file.

You can download the latest standalone version of the Razorcat FLS (for server installations)Download the

latest FLS from https://www.razorcat.com/de/downloads-tessy.html.

A newer version of the license server can be installed in parallel to any existing FLS instal-

lation. To start the updated version of the license manager the previously running license

server needs to be stopped and deactivated.

Detailed descriptions about the updating procedure can be found on

https://www.razorcat.com/de/tessy-faq.html.

14 TESSY 5.1 Manual

https://www.razorcat.com/de/downloads-tessy.html
https://www.razorcat.com/de/tessy-faq.html

1.1 Windows installation

1.1.4.7 The License Manager (FLM)

The Floating License Manager (FLM) is used to control and to configure the Floating License

Server. In general there is no need to use the FLM, because the configuration of a local

license server automatically takes place during the installation of the license file. In some

cases it is helpful to use the FLM to change the default settings to suit your needs.

The FLM is in any case necessary to configure a central license server (see Registering a

floating license for network usage) as well as in case of problems.

Þ Start the License Manager by clicking “Start” in Windows > “Razorcat Floating Li-

cense Server 8.x” > “Floating License Manager”

Functions and icons of the FLM:

Icon Name Function

Info Show information about the license.

Server Select license server.

Check Out Check out licenses from the server for

local usage.

Configure Configure local license server.

Start Local Server Start the server manually.

Stop Local Server Stop the server manually.

Configure Configure the server.

Check Check your license key file.

Clear Window Clear FLM window.

Table 1.1: Functions of the FLM

TESSY 5.1 Manual 15

1 Installation and registration

Figure 1.14: License key check successful: this license key is correct

For more information about the handling and status of licenses please read the fol-

lowing sections: 1.3 Using a license without connection to the license server (FLS),

1.3.1 Checking-out the license for use on your local computer, and 1.3.2 Using a

license on a computer with no connection to the license server.

1.1.5 Uninstallation

Important: By uninstalling TESSY the project root will not be deleted, neither your

project data or your configuration file will be deleted. Nevertheless: Please make

sure that your data is saved.

To uninstall and remove all components of TESSY,

Þ click “Start” in Windows > “TESSY 5.x” > “Uninstall TESSY”.

All components of TESSY will be removed. This will take a few seconds.

The “Razorcat Floating License Server” (FLS) and the “Razorcat Shared” installation files will

remain on the computer. If you want to delete those as well, you can use the windows “Apps

& features” function (see figure 1.15).

16 TESSY 5.1 Manual

1.1 Windows installation

Figure 1.15: Uninstalling FLS and Shared installation files

TESSY 5.1 Manual 17

1 Installation and registration

1.2 Linux installation

1.2.1 Technical requirements

TESSY is available for Linux platforms starting with Ubuntu 20.04 since TESSY 5.0. Legacy

versions will not be supported.

The TESSY Linux version supports the GNU/GCC compiler and Eclipse debugger as target

environment. Further compiler and target environments that are available on Linux will be

supported on demand.

Important: TESSY needs a running X server. See more information in section X

server on headless systems

1.2.2 Setup

To install TESSY on a Debian based Linux distribution you need to add a trusted repository

first. This only needs to be done once. We provide two variants of doing that:

• Download via HTTPS a small package which will install the prerequisites automatically.

• Follow a step by step description.

1.2.2.1 Install Razorcat release infrastructure package

Þ Download the package which is designed for your Linux distribution:

• Ubuntu 22.04

https://www.razorcat.com/deb/releases/jammy/razorcat-tessy-release_all.
deb

Þ Run the following command:

$ sudo dpkg -i razorcat-tessy-release_all.deb

18 TESSY 5.1 Manual

https://www.razorcat.com/deb/releases/jammy/razorcat-tessy-release_all.deb
https://www.razorcat.com/deb/releases/jammy/razorcat-tessy-release_all.deb

1.2 Linux installation

1.2.2.2 Step by Step: Add Razorcat repository to your trusted repositories

You can skip this section if you already installed the “razorcat-tessy-release” package as de-

scribed in 1.2.2.1 Install Razorcat release infrastructure package. To add a trusted repository

you have to open a shell window and execute the following commands:

$ sudo -i

This will start a shell with root rights.

Install the Razorcat public key such that your Ubuntu system can verify the package down-

loads:

wget -O - http://www.razorcat.com/deb/razorcat-signing-key.asc \
| gpg --dearmor - | tee /etc/apt/trusted.gpg.d/razorcat.gpg >/dev/null

Now you have to add an APT repository according to your Ubuntu version.

If you are unsure about your Ubuntu version use the following to show the version.

lsb_release -a

1.2.2.3 Ubuntu 22.04 LTS (Jammy Jellyfish)

Execute this on a system running Ubuntu 22.04:

echo 'deb [arch=amd64] http://www.razorcat.com/deb/ jammy non-free' \
>>/etc/apt/sources.list.d/razorcat.list

1.2.3 Installation

Installing the current version of TESSY/FLS within the root shell:

apt-get update
apt-get install rc-tessy-5.1 -y
apt-get install rc-fls -y

Installing a specific version of TESSY/FLS within the root shell:

apt-cache policy rc-tessy-5.1

TESSY 5.1 Manual 19

1 Installation and registration

This will show the available versions, e.g.:

rc-tessy-5.1:
Installed: 5.1.1-1+123.1
Candidate: 5.1.2-1+28.1

Version table:
5.1.2-1+28.1 500
500 http://www.razorcat.com/deb focal/contrib amd64 Packages
*** 5.1.1-1+123.1 500
500 http://www.razorcat.com/deb focal/contrib amd64 Packages
100 /var/lib/dpkg/status
5.1.1-1+108.4 500
500 http://www.razorcat.com/deb focal/contrib amd64 Packages
5.1.1-1+108.3 500
500 http://www.razorcat.com/deb focal/contrib amd64 Packages

Installing a selected version, e.g.:

apt-get install rc-tessy-5.1=5.1.2-1+28.1

1.2.4 X server on headless systems

TESSY needs a running X server. On most desktop systems this is no issue. On headless

server systems this can be provided by the Xvfb tool, e.g. provided by the Ubuntu package

repository.

sudo apt-get install xvfb

Before running tessyd the X server must be started and the DISPLAY variable has to be

provided:

export DISPLAY=:1
Xvfb "$DISPLAY" -screen 0 1024x768x24 &

20 TESSY 5.1 Manual

1.2 Linux installation

1.2.5 Registration

A license request should be executed in a shell as a normal user (not as root user).

Requesting a license:

$ /opt/razorcat/fls/bin\$./flsutil request-license

This will open the license request web page on the Razorcat website.

If you requested the license within the root shell by mistake, you will see a message similar

to this:

https://www.razorcat.com/en/tessy_key_request.html? →
hostid=079CD4ADC879-000-07

In this case please copy the displayed URL and open it manually using a web browser. This

will also lead to the license request web page on the Razorcat website.

Fill in and submit the license request form on the web page and you will receive a license

file from our support team. Copy this license file to your local disk. Installing the license to a

proper location and starting the license server:

/opt/razorcat/fls/bin/flsutil install-license license.txt
systemctl enable rc-fls
Created symlink /etc/systemd/system/multi-user.target.wants/rc-fls.service →

/lib/systemd/system/rc-fls.service.

systemctl start rc-fls

Checking for problems with the license server:

/opt/razorcat/fls/bin/flsd --foreground --verbose

This will start the license server as an application and put out diagnostic messages.

TESSY 5.1 Manual 21

1 Installation and registration

1.3 Using a license without connection to the license server (FLS)

Important: For using your TESSY license temporarily without connection to the

license server, you need a “Floating License”.

You can temporarily check-out your TESSY floating license on your computer and work inde-

pendently of the connection to the Floating License Server (FLS).

This is useful when there is temporarily no connection to the license server available (e.g.

when traveling, see subsection 1.3.1 Checking-out the license for use on your local com-

puter).

It is also possible to check-out a license for a computer that will never be able to reach the

license server directly (e.g. a stand-alone computer or a computer within an isolated net-

work, see subsection 1.3.2 Using a license on a computer with no connection to the license

server).

This check-out optionChecking-out a

License
• is only possible with a TESSY floating license.

• is effective for 30 days altogether: You can check-out the license for one, for two or up

to 30 days each time, but overall for 30 days at the most.

• means, that you can use TESSY either on computer 1 or on computer 2. When you

check-out the license on computer 1 for three days, you can not use TESSY on com-

puter 2 for these three days.

Important: It is not possible to return a checked-out license prematurely to the

computer from which the licenses were checked-out!

To see how many days you may check-out a license

Þ click “Start” in Windows > “Razorcat Floating License Server 8.x” > “Floating License

Manager”.

Þ In the License Manager click on “License” > “Info”.

22 TESSY 5.1 Manual

1.3 Using a license without connection to the license server (FLS)

Þ Next to “State” the amount of days for possible check-outs will be displayed (see figure

1.16).

Important: If the state says “disabled” contact your administrator!

Figure 1.16: The license info shows the possible number of days for checking out the license

Licenses in use

The License Manager also provides information about the licenses that are in use on your
computer or were transferred part-time to another computer (click on > “Info”).

Info text example Meaning

joe@company.com:0
checked out for 2 day(s) since
Wed Jun 06 17:21:07 2018

License checked out statically

(for a selected number of days)

joe@company.com:50874
currently checked out since
Wed Jun 06 17:21:39 2018

License checked out dynamically

(as long as TESSY is in use)

Table 1.2: Information about licenses in use in the License Manager

TESSY 5.1 Manual 23

1 Installation and registration

1.3.1 Checking-out the license for use on your local computer

Use this license check-out option if you want to make use of the license independently of the

license server connection (e.g. when traveling).

Þ In the menu bar click on “License” > “Check Out…” (see figure 1.17).

Figure 1.17: Checking out the TESSY license

Þ Choose the amount of days. The Registration Information will be filled out automatically

(see figure 1.18).

Þ Click “ok” and save the file.

You can now use this license file on your local computer. To register the license refer to

section 1.1.4.2 Registering the license.

Figure 1.18: Determine the amount of days for the check-out

24 TESSY 5.1 Manual

1.3 Using a license without connection to the license server (FLS)

1.3.2 Using a license on a computer with no connection to the license server

To be able to use the TESSY floating license on another computer with no license server

connection (e.g. a stand-alone computer or a computer within an isolated network) the pro-

cedure described in section 1.3 Using a license without connection to the license server (FLS)

needs to be modified.

Þ Open the license manager on your computer with NO license server connection (see

1.1.4.7 The License Manager (FLM)).

Þ In the menu bar click “License” > “Request…” .

Þ Copy the first 12 characters in “Registration Information” (see figure 1.9). Transmitting the

license fileÞ Transmit these 12 characters to your local computer WITH license server connection.

Þ Insert the transmitted 12 characters into “Registration Information” (see figure 1.18)

when checking-out on your local computerWITH license server connection (see section

1.3.1 Checking-out the license for use on your local computer).

Þ Choose the amount of days, click “ok”, and save the license file.

Þ Make this file available on the other computer with NO license server connection.

Þ You can now register this license file on the other computer with NO license server

connection (see section 1.1.4.2 Registering the license).

Figure 1.19: Transmitting the license file to a computer with no FLS connection

TESSY 5.1 Manual 25

2 Migrating from TESSY 4.x to 5.x

In the new version of TESSY you will find some new functions as mentioned in section New

features in TESSY 5.0 and New features in TESSY 5.1.

Important: Please note that TESSY 5.0 is a Linux version only.

Migrations of previous projects created with TESSYWindows versions to a TESSY

Linux version are not covered in this chapter.

2.1 Changes as of TESSY v5.1

In general projects fromTESSY 4.x will automatically be converted to TESSY 5.x while open-

ing (see 2.2 Importing previous projects).

Important: If you have adapted the test environment (TEE) compiler/target set-

tings or the makefile template, you need to review those settings.

The makefile templates have been changed since TESSY 5.1 so that you need to

apply any customizations done with TESSY 4.x onto the makefile templates deliv-

ered with TESSY 5.x.

26 TESSY 5.1 Manual

2.2 Importing previous projects

2.2 Importing previous projects

You will have to convert your projects to use them with the new TESSY 5.x version.

When you open a project, TESSY will ask you if you want to convert your project. By clicking

“Yes” TESSY will convert the project automatically.

Figure 2.1: Updating a project

Warning: Once you have converted your project it cannot be used by TESSY 4.x

anymore! If you want to use your project withTESSY 4.x, make a copy of the project.

TESSY 5.1 Manual 27

3 Theory: Basic knowledge

This chapter offers a brief introduction about unit testing with TESSY and the classification

tree method. It provides basic knowledge for organizing and executing a unit test in general

and in particular with TESSY. The chapter about the classification tree method helps you to

understand the logical system and to use the CTE.

3.1. Unit testing of embedded software 29

3.1.1. Standards that require testing . 29

3.1.2. About unit testing . 29

3.1.3. Considerations for unit testing . 31

3.1.4. Methods for unit testing . 33

3.1.5. Conclusion . 35

3.2. The Classification Tree Method (CTM) 36

3.2.1. General . 36

3.2.2. Steps to take . 37

3.2.3. Example is_value_in_range . 43

28 TESSY 5.1 Manual

3.1 Unit testing of embedded software

3.1 Unit testing of embedded software

3.1.1 Standards that require testing

International standards like IEC 61508 require module tests. According to part 3 of IEC

61508, the module test shall show that the module under test performs its intended func-

tion, and does not perform unintended functions. The results of the module testing shall be

documented.

IEC 61508 classifies systems according to their safety criticality. There are four safety in-

tegrity levels (SIL), where 1 is the lowest level and 4 the highest, i.e. systems at level 4 are

considered to be the most critical to safety. Even for applications of low criticality (i.e. at SIL

1), a module test is already “highly recommended”. The tables contained in the annexes of

IEC 61508, Part 3 specify the techniques that should be used, e.g. for module testing the

technique “functional and black box testing” is highly recommended at SIL 1 already. Other

techniques, such as dynamic analysis and testing are recommended at SIL 1 and highly rec-

ommended at SIL 2 and higher.

Part 4 of IEC 61508 defines a (software) module as a construction that consists of proce-

dures and/or data declarations, and that can interact with other such modules. If we consider

embedded software which is written in the C programming language, we can take a C-level

function as a module. To prevent a mix-up between C-level functions and C source modules,

we will refer to the C-level functions as units from now on.

Also other standards like the British Def Stan 00-55, ISO 15504 or DO-178B require module

testing (where the nomenclature ranges from “module” to “unit” to “component”). However,

all standards have more or less the same requirements for that kind of test: the tests have

to be planned in advance, test data has to be specified, the tests have to be conducted, and

the results have to be evaluated and documented.

3.1.2 About unit testing

3.1.2.1 What is unit testing?

During unit testing of C programs, a single C-level function is tested rigorously, and is tested

in isolation from the rest of the application. Rigorous means that the test cases are specially

made for the unit in question, and they also comprise of input data that may be unexpected

by the unit under test. Isolated means that the test result does not depend on the behavior

TESSY 5.1 Manual 29

3 Theory: Basic knowledge

of the other units in the application. Isolation from the rest of the application can be achieved

by directly calling the unit under test and replacing the calls to other unit by stub functions.

Unit testing tests at the interface of the unit, and unit testing does not consider the internal

structure of the unit, and therefore unit testing is considered as black-box testing.

The interface of the unit consists of the input variables to the unit (i.e. variables read by the

unit) together with the output variables (i.e. variables written by the unit). A variable can both

be an input and an output (e.g. a variable that is incremented by the unit), and the return

value of the unit - if present - is always an output. The structure of a test case follows from

the structure of the interface.

Unit testing is conducted by executing the unit under test with certain data for the input vari-

ables. The actual results are compared to those predicted, which determines if a test case

has passed or failed.

Unit testing (of C-level functions, as described) is well suited to fulfill the requirements of

module testing for IEC 61508, because unit testing is

• functional, because the functionality of the unit is tested, and

• a black-box, because the internals of the unit are not taken into account, and

• dynamic, because the test object is executed during the test.

3.1.2.2 What are the benefits?

• Finding errors early: Unit testing can be conducted as soon as the unit to be tested

compiles. Therefore, errors inside the unit can be detected very early.

• Saving money: It is general knowledge that errors which are detected late are more

expensive to correct than errors that are detected early. Hence, unit testing can save

money.

• Reducing complexity: Instead of trying to create test cases that test the whole set of

interacting units, the test cases are specific to the unit under test. Test cases can easily

comprise of input data that is unexpected by the unit under test or by even random

input test data, which is rather hard to achieve if the unit under test is called by a fully-

functioning unit of the application. If a test fails, the cause of the failure can be easily

identified, because it must stem from the unit under test, and not from a unit further

down the calling hierarchy.

30 TESSY 5.1 Manual

3.1 Unit testing of embedded software

• Giving confidence: After the unit tests, the application is made up of single, fully tested

units. A test for the whole application will be more likely to pass, and if some tests fail,

the reason will have probably stemmed from the interaction of the units (and not from

an error inside a unit). The search for the failure can concentrate on that, and must not

doubt the internals of the units.

3.1.3 Considerations for unit testing

3.1.3.1 Which units are good test candidates?

Unit testing verifies that certain input data generates the expected output data. Therefore,

units that do data processing in its widest sense, e.g. generation of data, analysis of data,

sorting, making complex decisions, difficult calculations are best suited for unit testing. To find

such units, the application of metrics (e.g. the cyclomatic complexity according to McCabe)

may be appropriate.

Other criteria for selecting units to test may be how critical the functionality is to the unit’s

operation, or how often a unit is used in the application.

3.1.3.2 What is not in the scope of unit testing?

The interaction of the units is not tested during the unit test. This includes the semantic of

the parameters passed between units (e.g. the physical unit of the values), and the timely

relationships between units (e.g. does a unit fulfill its task fast enough to let a calling unit fulfill

their tasks also at the required speed?) In addition, the interrupt behavior of the application is

not in the scope of unit testing. Questions like “Does my interrupt really occur every 10 ms?”

or “Which interrupt prolonged my unit unacceptably?” are not addressed by unit testing,

because unit testing explicitly aims at testing the functional behavior of the unit isolated from

environmental effects such as interrupts.

3.1.3.3 Why is regression testing necessary?

Regression testing is the repetition of tests that have already passed after the implementation

of bug fixes or improvements in the software. Regression testing proves that a change in the

software did not result in any unexpected behavior. Regression testing is a key to software

quality. Obviously, the practice of regression testing requires the automation of the tests,

because the effort to repeat the tests manually is too high. Even for non-repetitive unit tests,

TESSY 5.1 Manual 31

3 Theory: Basic knowledge

the proper tool support will save you lots of time, but tool support is indispensable for the

repetition of the unit tests.

3.1.3.4 Who should conduct the tests?

The dilemma: It is commonly accepted that a software developer is badly suited to test his

own software, especially if the complete implementation, or the compliance of the implemen-

tation with the specification is an issue (blindness against own faults). If the developer has

forgotten to implement a certain functionality, it is likely he will also forget a test that will reveal

the missing functionality. If the developer has misinterpreted the specification, it is likely that

his tests will pass in spite of the wrong functionality.

On the other hand, experience has shown that a tester, who should test a code not written

by him must put a lot of effort into understanding the function´s interface. The tester must

find out the meaning of the variables, and which values to use to conduct certain tests. E.g.,

if the test specification requires the test of something “green”, which variable (or variables)

represents the color, and which value of the variable represents green? The prediction of the

expected results poses similar problems.

If the developer does not do tests, this gives rise to additional efforts, because the failed

test has to be passed to the developer, he has to reproduce the failure, correct the problem,

and then normally a concluding external regression test has to take place. Furthermore,

additional effort rises due to the fact that the developer will not hand out his software to the

QA department without having done at least some tests. This duplicated test effort could

be saved if the developer immediately starts testing by using the externally predefined test

cases.

The way out: A way out of that dilemma could be that a tester, who has not written the

code, specifies the test cases according to the functional specification of the unit, including

the expected results. He can use abstract data for this (e.g. color = green). The set of test

cases is handed over to the developer of the software. For him, it should be no problem to set

the input variables to the required values (e.g. the appropriate RGB value for green). If a test

fails, the developer can immediately correct the problem and re-run all tests that have passed

so far (regression testing). Testing is seen as an additional step during the implementation

of software, in comparison to the compiling step, where the compiler finds all syntax errors,

and the developer corrects them interactively, verifying his changes by subsequent compiler

runs.

However, standards require the organizational separation of development and test, due to

the initial mentioned reason of blindness against own faults. Possibly, it could be sufficient to

32 TESSY 5.1 Manual

3.1 Unit testing of embedded software

only separate the specification of the test cases from the development, and to consider the

conduction of predefined test cases not to suffer under the above mentioned blindness.

Furthermore, a developer´s time is often considered as too valuable to be wasted on testing,

which is why developer testing is not found often in practice. However, this is going to be

reconsidered.

3.1.3.5 What is special for testing embedded software?

For embedded software it is essential that the unchanged source code with all the non-ANSI

keywords and non-ANSI peculiarities is used for testing. For instance, some cross compiler

for embedded systems allow for bit fields that are smaller than the integer size, e.g. 8-bit wide

bit fields in a 16-bit application. This is forbidden by the ANSI C standard, but justifiable by

the perfect adaptation to the embedded system. Naturally, the unit test results are worthless,

if this illegal size cannot be maintained during the tests. This requires specialized tools.

Furthermore, it is also essential that the concluding tests at least execute on the actual hard-

ware, i.e. the embedded microcontroller. This is a challenge, but there are ways to attenuate

this. Using a cross compiler for the microcontroller in question is a prerequisite, preferably

the exact version that will be used also for the user application.

3.1.4 Methods for unit testing

Unit test tools can follow two technical approaches towards unit test: The test application

approach uses a special application for conducting the unit tests. This is the usual approach.

The original binary test uses the unchanged user application for testing.

3.1.4.1 a. Test application

The usual method for unit test tools to conduct unit tests is to generate a test driver (also

called test harness) and compile the test driver together with the source code of the unit

under test. Together they form the test application. The test driver includes startup code for

the embedded microcontroller, the main() function entry, and a call to the unit under test. If

required, the test driver contains also code for stub functions and the like. For each unit to test,

an own test application is created. This test application is used to conduct the unit tests. For

that, the test application is loaded into an execution environment capable of executing the test

application. This execution environment is normally a debugger connected to an (instruction

set) simulator, an in-circuit emulator stand-alone or connected to a target system, a JTAG or

TESSY 5.1 Manual 33

3 Theory: Basic knowledge

BDM debugger or the like. After test data is transferred to the execution environment, (the

test data may already be included in the test application), tests are conducted and the results

are evaluated.

To execute the test application on the actual hardware, the test application must not only be

compiled using a cross compiler for the microcontroller in question, but also the test applica-

tion must fit into the memory present on the actual hardware. Also, the startup code of the

test application must take into account peculiarities of the actual hardware, e.g. the enabling

of chip selects and the like. Making the test application fit into memory can be simplified

by using an in-circuit emulator, which provides emulation memory, and serves as a kind of

generalized hardware platform for the microcontroller in question.

When the actual hardware has to be used and if memory on this hardware is very limited, the

test application must be minimized to fit into this memory. This is especially challenging for

single chip applications, where only the internal memory of the microcontroller is available. If

test data is included in the test application (and memory is limited), a single test application

can only include a few test cases, which in turn means several test applications for the test of

one unit, which is cumbersome. An approach which avoids this, keeps the test data separated

from the test application, which allows not only for aminimized test application, but also allows

you to change the test data without having to regenerate the test application.

3.1.4.2 b. Original binary test

Another approach is to use the unchanged user application for unit testing. This resembles

the manual test that is usually done by a developer after the application is completed. The

complete application is loaded into the execution environment, and the application is executed

until the unit to be tested is eventually reached. Then the input variables are set to the required

values, and the test is conducted.

3.1.4.3 Pros and cons

The advantage of the Original Binary Test approach is that the unit under test is tested exactly

in its final memory location. There is no extra effort (or hassle) for compiling and linking a test

application, because the user application is used, which is already compiled and linked or

had to be compiled and linked anyway. Because the user application must fit in the memory

anyway, problems regarding the size of the application can be neglected. Even applications

that already reside in the ROM of the hardware can be tested. Even if the cross compiler

used to compile the user application is no longer at hand, tests are still feasible.

34 TESSY 5.1 Manual

3.1 Unit testing of embedded software

However, this Original Binary Test approach has some disadvantages compared to using a

test application:

• There is no control over the test execution. It depends on the user application, when the

unit under test is reached. It may be the case that the unit under test is never reached,

or only after some special external event has happened, e.g. the push of a button of

the actual hardware and an interrupt resulting from this.

• During the Original Binary Test, stub functions cannot be used. This is clear because

the application is already linked using the current functions that are called by the unit

under test. A unit is always tested using the other units of the application. Therefore,

the unit under test is not isolated from the rest of the application, and errors of called

units may show up during the test of the unit under test.

• It is not possible to use arbitrary test data for the unit test. For instance, if the unit under

test gets its test data by a pointer pointing to a memory area, the amount test data must

fit into this memory area, which was allocated by the user application.

Apart from its easy usage, which possibly could be the only means to do some unit testing

at all, the Original Binary Test has strong disadvantages, which are essential for proper unit

testing and therefore one could even insist that it is not a unit test in its strictest sense.

3.1.5 Conclusion

Besides being required by standards, unit testing reduces the complexity of testing, finds

errors early, saves money, and gives confidence for the test of the whole application. If used

in the right way, unit testing can reduce development/test time and therefore reduce the time-

to-market. To conduct regression tests, test automation is indispensable. This requires tool

support.

TESSY 5.1 Manual 35

3 Theory: Basic knowledge

3.2 The Classification Tree Method (CTM)

The objective of the Classification Tree Method (CTM) is to transform a (functional)

definition of a problem systematically into a set of error-sensitive, low redundancy set

of test case specifications. This document gives a comprehensive overview of the

CTM.

3.2.1 General

Testing is a compulsory step in the software development process. The planning of such

testing often raises the same questions:

• How many tests should be run?

• What test data should be used?

• How can error-sensitive tests be created?

• How can redundant tests be avoided?

• Have any test cases been overlooked?

• When is it safe to end testing?

Anyone who has been confronted with such issues will be glad to know that the CTM offers

a systematic procedure to create test case specifications based on a problem definition.

The objective of the CTM is to transform a (functional) definition of a problem systematically

into a set of error-sensitive, low redundancy set of test case specifications. The systematic

approach yields a high probability that the resulting set of test specifications is complete and

no relevant tests are overlooked. Naturally, correct usage of the method and an appropriate

integration in the development process are prerequisites. Having a complete set of tests gives

evidence when it is safe to end testing.

The CTM is applied by a human being. Therefore, the outcome of the method depends on the

experiences, reflections, and appraisals of the user of the CTM. Most probably two different

users will come out with a different set of test case specifications for the same functional prob-

lem. Both sets could be considered to be correct, because there is no absolute correctness.

It should be clear that there are set of test cases that are definitively wrong or incomplete.

Because of the human user, errors cannot be avoided. One remedy is the systematic inher-

ent in the method. This systematic guides the user and stimulates his creativity. The user

shall specify test cases with a high probability to detect a fault in the test object. Such test

cases are called error-sensitive test cases. On the other hand, the user shall avoid that too

many test cases are specified, that are superfluous, i.e. do not increase test intensiveness

36 TESSY 5.1 Manual

3.2 The Classification Tree Method (CTM)

or test relevance. Such test cases are called “redundant” test cases. It is advantageous, if

the user is familiar with the field of application the method is applied in.

The CTM is a general method: It can not only be applied to module/unit testing of embedded

software, but to software testing in general and also to functional testing of problems, that are

not software related. The prerequisite to apply the method is to have available a functional

specification of the behavior of the test object. The CTM incorporates several well-known

approaches for test case specification, e.g. equivalent partitioning, and boundary value analy-

sis.

The CTM stems from the former software research laboratory of Daimler in Berlin, Ger-

many.

3.2.2 Steps to take

a. Defining the functional problem

The first step is to describe the expected behavior of the test object, e.g. “If the button is

pushed, the light will go on; if the button is released, the light will go off”. Data processing

software normally solves functional problems, since input data is processed according to an

algorithm (the function) to become output data (the solution).

b. Determining the test-relevant aspects

Analyze the functional specification. This means, you think about this specification with the

objective to figure out the test-relevant aspects of the specification. An aspect is considered

relevant if the user expects that aspect to influence the behavior of the test object during the

test. In other words, an aspect is considered relevant if the user wants to use different values

for this aspect during testing. To draw the tree, these aspects are worked on separately. This

reduces the complexity of the original problem considerably, what is one of the advantages

of the CTM.

Example for a test-relevant aspect

Consider systems that measures distances in a range of some meters, e.g. the distance to a wall

in a room. Those systems usually send out signals and measure the time until they receive the

reflected signal. Those systems can base on two different physical effects: One can use sonar

to determine the distance, whereas the other can use radar.

The question is now: Is the temperature of the air in the room a test relevant aspect for the test

of these measurement systems? The answer is yes for one system and no for the other:

TESSY 5.1 Manual 37

3 Theory: Basic knowledge

The speed of sound in air (sonar) is dependent on the temperature of the air. Therefore, to get

exact results, the sonar system takes this temperature into account during the calculation of the

distance. To test if this is working correct, you have to do some tests at different temperatures.

Therefore, the temperature is a test-relevant aspect for the sonar system.

On the other hand we all know that the speed of a radar signal, that travels at the speed of light,

is independent from the temperature of the air it travels in (it did not even need air to travel).

Therefore, the temperature of the air is not a test-relevant aspect for the testing of the radar

system. It would be superfluous to do testing at different temperatures.

This example shows that it needs careful thinking to figure out (all) test relevant aspects. It would

lead to poor testing if someone simply takes the test cases for the radar system and applies

them to the sonar system without adding some temperature-related test cases. Additionally, this

example illustrates that it is advantageous to have some familiarity with the problem field at hand

when designing test cases.

c. Classifying the values of a test-relevant aspect

After all test relevant aspects are determined, the values that each aspect may take are

considered. The values are divided into classes according to the equivalence partitioning

method: Values are assigned to the same class, if the values are considered equivalent for

the test. Equivalent for the test means that if one value out of a certain class causes a test

case to fail and hence reveals an error, every other value out of this class will also cause the

same test to fail and will reveal the same error.

In other words: It is not relevant for testing which value out of a class is used for testing,

because they all are considered to be equivalent. Therefore, you may take an arbitrary value

out of a class for testing, even the same value for all tests, without decreasing the value of

the tests. However, the prerequisite for this is that the equivalence partitioning was done

correctly, what is in the responsibility of the (human) user of the CTM.

Please note:

• Equivalent for the test does not necessarily mean that the result of the test (e.g. a

calculated value) is the same for all values in a class.

• Equivalence partitioning must be complete in mathematical sense: Every possible

value of a test relevant aspect must be assigned to a class.

• Equivalence partitioning must be unique in mathematical sense: A value of a test rele-

vant aspect must be assigned to a single class, and not to several classes.

38 TESSY 5.1 Manual

3.2 The Classification Tree Method (CTM)

Example for equivalence partitioning: IceWarning

An ice warning indication in the dashboard of a car shall be tested. This ice warning indication

depends on the temperature reported by a temperature sensor at the outside of the car, which

can report temperatures from -60°C to +80°C. At temperatures above 3°C the ice warning shall

be off, at lower temperatures it shall be on.

It is obvious that the temperature is the only test-relevant aspect. To have an reasonable testing

effort, we do not want to have a test case for every possible temperature value. Therefore,

all possible temperature values need to be classified according to the equivalence partitioning

method.

It is best practice to find out if invalid values may be possible. In our case a short circuit or

an interruption of the cable could result in an invalid value. Therefore, we should divide the

temperature in valid and invalid values first. The invalid values can relate to temperatures that

are too high (higher than 80°C) and to ones that are too low (lower than -60°C). It is tempting

to form two classes out of the valid temperatures: The first class shall contain all values that

result in the ice warning display being on (from -60°C to 3°C) and the other class shall contain

all values that result in the ice warning display being off (from 3°C to 80°C).

Figure 3.1: Initial equivalence partitioning for “ice warning”

The equivalence partitioning in the figure above leads to at least four test cases, because we

need to take a value out of each class for the tests.

d. Repeating equivalence partitioning

An equivalence class can be sub-divided according to additional aspects. This equivalence

partitioning on several levels reduces the complexity of equivalence partitioning, because

you can consider each class isolated from the other classes and decide, if and how it needs

to be sub-divided or not. Furthermore, this equivalence partitioning on several levels doc-

uments the thoughts resp. stages of work until the final equivalence partition. This serves

understandability and traceability of the result. Also it allows easily reverting steps if the final

TESSY 5.1 Manual 39

3 Theory: Basic knowledge

equivalence partition has become too fine granulated.

Example for repeated equivalence partitioning

For the example ice warning, the classification of the valid values is not detailed enough, because

according to the equivalence partitioning method, it would be sufficient to use a single, arbitrary

value out of a class for all the tests. This could be for instance the value 2°C out of the class

of temperatures, for which the ice warning display is on. In consequence, no test with a minus

temperature would check if the ice warning display is on. To avoid this consequence, you could

divide this class further according to the sign of the temperature:

Figure 3.2: Repeated equivalence partitioning for “ice warning”

Result: Classification tree

Using the CTM, the result of the repetition of equivalence partitioning for all test relevant

aspects is depicted in the CT. The root represents the functional problem, the test relevant

aspects. Test relevant aspects (classifications) are drawn in nodes depicted by rectangles.

Classes are ellipses.

40 TESSY 5.1 Manual

3.2 The Classification Tree Method (CTM)

Figure 3.3: A possible CT for “ice warning”

e. Using boundary values

The idea behind using boundary values is that values at the borders of a range of values

are better suited to form error-sensitive test cases than values in the middle. The idea behind

boundary values analysis is contrary to equivalence partitioning, because onemethod takes a

set of values as equivalent and the other method prefers special values in such a set. Despite

the fact that the idea behind boundary values analysis is exactly the opposite of equivalence

partitioning, both approaches can be expressed in the CTM.

f. Testing a hysteresis

The current problem specification of the ice warning-example does not mention hysteresis. It

may be tempting to extend the current problem specification in that fast changes in the state

of the ice warning display shall be avoided. For instance, the ice warning display shall be

switched off only after the temperature has risen to more than 4°C.This could be realized by a

hysteresis function. The necessary test cases for such a hysteresis function can be specified

by the CTM.

TESSY 5.1 Manual 41

3 Theory: Basic knowledge

g. Specifying test cases

Test cases are specified in the so-called combination table below the CT.The leaf classes of

the CT form the head of the combination table. A line in the combination table depicts a test

case. The test case is specified by selecting leaf classes, from which values for the test case

shall be used. This is done by the user of the method, by setting markers in the line of the

respective test cases in the combination table.

Figure 3.4: Result of the CTM: tree (above) with combination table (below)

It may be tempting to combine every class with every other class during the specification

of the test cases. Besides the fact, that not every combination might be possible for logical

reasons, it is not the intention of the CTM to do so, it could be done automatically by a tool.

This would lead to many test cases, with the disadvantages of loss of overview and too much

effort for executing the test cases.

The objective of the CTM is to find a minimal, non-redundant but sufficient set of test cases

by trying to cover several aspects in a single test case, whenever possible. Similar to the

drawing of the tree, it depends on the appraisal and experience of the user of the method,

how many and which test cases are specified.

Obviously the size of the tree influences the number of test cases needed:

A tree with more leaf classes naturally results in more test cases than a tree with less leaf

classes. The number of leaf classes needed at least for a given tree is called the minimum

criterion. It can be calculated from the consideration that each leaf class should be marked in

42 TESSY 5.1 Manual

3.2 The Classification Tree Method (CTM)

at least one test case, and that some leaf classes cannot be combined in a single test case,

because the classes exclude each other.

Similar amaximum criterion can be calculated, which gives the maximal number of test cases

for a given CT. A rule of thumb states that the number of leaf classes of the tree gives the

order of magnitude for the number of test cases required for a reasonable coverage of the

given tree.

3.2.3 Example is_value_in_range

Problem definition:

A start value and a length define a range of values. Determine if a given value is within the

defined range or not. Only integer numbers are to be considered.

Figure 3.5: The problem “is_value_in_range” depicted graphically

It is obvious, that completed testing is practically impossible, because we get 65536 * 65536 *

65536 = 281.474.976.710.656 test cases, even if we assume only 16 bit integers. If we would

assume 32 bit integers …well, we better do not.

3.2.3.1 Test-relevant aspects

The start of the range and the length can be regarded as test relevant aspects. This is

convenient since, according to the problem definition, a range of values is defined by a start

value and a length. It reflects the intention to use different values for the start and the length

during testing.

TESSY 5.1 Manual 43

3 Theory: Basic knowledge

We should have some test cases, which result in inside, and other test cases which result in

outside. We call the corresponding aspect position, because the position of the value under

test with respect to the range determines the result. So the three test-relevant aspects to be

used for classifications are initial value, length and position and they thus form the basis of

the CT:

Figure 3.6: The initial CT with three test-relevant aspects

3.2.3.2 Forming classes

Now classes are formed for the base classifications according to the equivalence partitioning

method. Usually, the problem specification gives us hints how to form the classes. E.g. if

the problem specification would state: “If the start value is greater than 20, the length value

doubles”, then we should form a class for start values greater than 20 and a class for start

values smaller or equal to 20.

Unfortunately, the problem specification at hand is too simple to give us similar hints. How-

ever, since the start value can take on all integer numbers, it would be reasonable to form

a class for positive values, a class for negative values, and another class for the value zero.

It would also be reasonable to form just two classes, e.g. one class for positive start values

including zero and the other class for negative start values. This depends on ones emphasis

having zero as value for the start of the range in a test case or not.

Figure 3.7: The CT for is_value_in_range, 2nd step

44 TESSY 5.1 Manual

3.2 The Classification Tree Method (CTM)

Because of the systematic inherent in the CTM, and because range_length is an integer as

well as range_start, it is stringent to use for range_length the same classes as for range_start.

This results in the following tree:

Figure 3.8: The CT for is_value_in_range, 3rd step

3.2.3.3 A first range specification

To specify a first range (to be used in the first test case), we have to insert a line in the

combination table and to set markers on that line:

Figure 3.9: A first specification for the range in the combination table

Two markers are set on the line for the first specification. One marker selects the class

positive for the start of the range. The other marker selects the class positive for the length

of the range. A range with the start value of, say, 5 and a length of 2 would accord to the

specification. This first specification was named trivial.

TESSY 5.1 Manual 45

3 Theory: Basic knowledge

3.2.3.4 A second range specification

We can insert a second line in the combination table and specify a much more interesting

tests case:

Figure 3.10: A second specification for the range in the combination table

For the second specification again two markers are set. They specify that a negative value

shall be used both for the start and for the end of the range. Hence a range with the start

value of -5 and a length of -2 would accord to the second specification. But this value pair

raises some questions: Shall the value -6 lie inside the range? Or shall the value -4 lie inside

the range? Or shall no value at all lie inside the range, if the length of the range is negative?

Each opinion has its supporters and it is hard to decide what is to be considered correct.

Actually, at this point it is out of our competence to decide what is correct. We have found a

problem of the specification!

It is a valuable result to find a problem (omission or contradiction) in the functional

problem specification, and that it was achieved in the case during test case specifi-

cation for the functional problem. It is generally more likely to detect a problem in the

functional specification if the test case specification is systematic. The CTM is a sys-

tematic method for test case specification. Hence, the CTM provides good means to

detect problems in the functional problem specification.

Probably a test case using a negative length would not have been used if the test case spec-

ification would have been done spontaneous and non-systematic. But a negative length is

completely legal for the functional problem specification that was given above. If you consider

46 TESSY 5.1 Manual

3.2 The Classification Tree Method (CTM)

that the problem specification at hand was a very simple one, you may imagine how likely it

is to overlook a problem in a more comprehensive and complicated problem specification.

3.2.3.5 Extending the tree by a boundary class

In case we are not satisfied with the fact that a fixed single positive value, e.g. 5, may serve as

value for the start of the range in all test cases, we can sub-divide the class positive according

to a suitable classification. In our example, we classify according to the size. The idea behind

this is to have a class containing only a single value, in our case the highest positive value

existing in the given integer range. We use this value because it is an extreme value, and as

we know, using extreme values (or boundary values) in test cases is well-suited to produce

error-sensitive (or interesting) test cases.

Figure 3.11: The CT for is_value_in_range, 4th step

In the figure above, the positive values for the start of the range are subdivided according to

their size.

This results in the two classes normal positive andmaximal positive. The classmaximal pos-

itive holds the highest possible positive value (i.e. MAX_INT), and the class normal positive

holds all other positive values. This satisfies mathematical completeness.

TESSY 5.1 Manual 47

3 Theory: Basic knowledge

Remark 1: Another possibility to classify the positive start values would have been for in-

stance to classify in odd and even values. This would have been completely legal. This would

have been probably also sensible for e.g. a problem of number theory, but not target-oriented

for the problem at hand.

Remark 2: Please note that for the moment we do not know and we need not to know the

size (in bits) of the integers used in the problem at hand. We simply specify “the highest

positive value in the given integer range”. This keeps our test case specification abstract! E.g.

our test case specification is appropriate for any integer size. As soon as we assume we use

e.g. 16 bit integers, and therefore parameterize our test case by specifying 32767 as value in

the class maximal positive, we loose this abstraction. E.g. if we port the parameterized test

case to a 32 bit integer system, the test case looses its sense. This is not the case if we port

the abstract test case specification.

3.2.3.6 Another interesting test case specification

With the CT extended according to figure 3.11 The CT for is_value_in_range, 4th step, we

can insert an additional line in the combination table and specify again an interesting range

for a third test case:

Figure 3.12: The third range specification provokes a wrap-around

48 TESSY 5.1 Manual

3.2 The Classification Tree Method (CTM)

The third range specification in the figure above combines the highest positive number for

the start value of the range with a positive length, i.e. the range exceeds the given integer

range.

The situation with the third range specification is similar to the situation depicted in the fig-

ure above. The situation raises some questions: Will the situation be handled sensible and

gracefully by the test object? Or will it crash due to the overflow? Will the negative values

on the left hand side be accounted to lie inside the range or not? And what is correct with

respect to the last question? The problem specification above does not give an answer to

the latter question, again we have found a weak point in the problem specification.

To sum up, designing test cases according to the CT method has revealed two problems of

the problem specification and has lead to interesting test cases so far.

3.2.3.7 The completed classification tree

Figure 3.13: The completed CT for is_value_in_range

In the figure above, one possible completed CT is depicted. Classifications are depicted by

rectangles, classes by ellipses. The “range” node is a composition with two classifications as

child elements.

TESSY 5.1 Manual 49

3 Theory: Basic knowledge

This tree is discussed in the following:

• Analogous to the classmaximal positive for the start value of the range, a classmaximal

negative is introduced. The idea behind this class is to combine the maximal negative

start value with a negative length of the range, what shall provoke an underflow or

negative wraparound. This idea comes from the systematic in the CTM: If a positive

wrap-around is seen as an interesting test case, also a negative wrap-around should

be exercised.

• An example for a composition is given by range. A composition may be used for a

relation “consists of”. In our case, the range consists of a start value and a length.

• The final tree features still the three initial classes positive, zero, and negative for the

length of the range. It is important to note that the tree reveals at a glance that nothing

likemaximal positive length or similar is considered to be useful for the testing problem

at hand.

• It is obvious that a position can either be inside or outside the range, hence this clas-

sification suggests itself. Furthermore, it is obvious that there are two different areas

outside the range: below the range and above the range. This is reflected in the clas-

sification position outside. (If the tree would miss such a classification, it may well be

considered incorrect).

• The class inside of the classification position could well be a leaf class of the classi-

fication tree. However, in the CT in the figure above, this class is subdivided further

in the sub-classes range_start, opposite_border, and inlying. This is done to force the

use of boundary values in the test cases. If a test case specification selects the class

range_start, the value that shall be checked if it is inside the range or not shall take the

value of the start of the range, that is the lowest value that is considered to be inside the

range, a boundary value. The class opposite_border is intended to create an analo-

gous test case specification, but using the highest value that is considered to be inside

the range. The class range_start and the class opposite_border both contain only a

single value. All other values inside the range are collected in the class inlying; this

class exists mainly because of the requirement for completeness of equivalence parti-

tioning. A similar approach to use boundary values is visible in the classes at border

for positions outside the range.

50 TESSY 5.1 Manual

3.2 The Classification Tree Method (CTM)

3.2.3.8 The completed test case specification

Figure 3.14: The completed test case specification

The test case specification above lists 14 test cases. Please note that these are specified by

the user and depend on its judgment. Based on the CT it is possible for some values to be

determined that provide clues to the number of test cases required.

The first value is the number of test cases, if each leaf class is included at least once in a

test case specification. This number is known as the minimum criterion. In our example,

the largest amount of leaf classes, namely seven, belong to the base classification position.

Seven is thus the value of the minimum criterion. The maximum criterion is the number of

test cases that results when all permitted combinations of leaf classes are considered.

TESSY 5.1 Manual 51

3 Theory: Basic knowledge

In our example, the maximum criterion amounts to 105 (i.e. 5 * 3 * 7). The maximum criterion

takes into account that it is not possible to select e.g. a negative length and a positive length

for the same test case specification, because this is impossible by the construction of the

tree. The maximum criterion does not take into account that it is not possible to select e.g. a

zero length and inlying, because this is not impossible by the construction of the tree, but by

the semantics of the function problem.

A reasonable number of test case specifications obviously lies somewhere between the min-

imum and the maximum criterion. As a rule of thumb, the total number of leaf classes gives

an estimate for the number of test cases required to get sufficient test coverage. In the test

case specification, the CT has 15 leaf classes, what fits well to 14 test cases.

By the test case specification in the figure above, you can deduct how the functional problem

specification was extended with respect to the questions raised in sections “A second range

specification” and “Another interesting test case specification”:

• “If the length of the range is negative, are there values that can be inside the range?”

The answer is “yes”, because in test case specification no. 5 and no. 6 a negative length

shall be used and the position of the value shall be inside the range.

• “If the length of the range exceeds the given integer range, shall negative values be

inside the range?” Test case specification no. 12 clarifies that this should not be the

case.

The leaf class inlying is selected for only one test case specification (no. 1). This reflects the

fact that this class exists only because of the requirement for mathematical completeness

of equivalence partitioning, and not because the inlying values are considered to produce

error-sensitive test cases.

52 TESSY 5.1 Manual

3.2 The Classification Tree Method (CTM)

3.2.3.9 Another test case specification

Here is an alternative test case specification to the functional problem specification at hand

depicted:

Figure 3.15: An alternative test case specification

What are the differences to themore elaborated test case specification in the section above?

• The start value of the range is not mentioned in the CT. This means, the start value is

not considered to be a test-relevant aspect by the user of the CTM. In consequence,

any arbitrary value can be used as start value in the four test cases. This value can be

fix for all test cases, but does not have to be.

• The problem of a negative length is completely neglected. For the problem specification

from section Problemwhich specifies a length to be an integer and hence also the length

to be negative, this is a serious flaw.

TESSY 5.1 Manual 53

3 Theory: Basic knowledge

• The problem of wrap-around is neglected. This may be considered to be an esoteric

problem, and therefore it could be accepted that it is not mentioned in the alternative

test case specification.

• The usage of boundary values is not forced by the alternative test case specification.

This is questionable, because boundary values produce error-sensitive test cases. The

alternative test case specification minimizes testing effort (by specifying only four test

cases), but this is at the cost of thoroughly testing.

But the point is not which test case specification is better. The main point is:

Test case specification according to the CTM visualizes testing ideas!

54 TESSY 5.1 Manual

TESSY 5.1 Manual 55

4 Tutorial: General handling

This chapter explains how to create databases for your test, how to work with the different

files and the graphical user interface of TESSY and provides some information about useful

shortcuts to work more efficient.

4.1. Creating databases and working with the file system 57

4.1.1. Creating a project database . 58

4.1.2. Creating, importing, cloning, editing, deleting a project 64

4.1.3. Creating a template project . 65

4.1.4. Moving the project directory . 66

4.1.5. Handling with equally named projects . 66

4.1.6. Using a specific environment setting . 68

4.1.7. Updating the database . 68

4.2. Understanding the graphical user interface 70

4.2.1. Menu bar . 71

4.2.2. Tool bar . 71

4.2.3. Perspectives and perspective (tool) bar . 71

4.2.4. Views . 72

4.2.5. Status bar . 76

4.3. Using the context menu and shortcuts 77

4.3.1. Context menu . 77

4.3.2. Shortcuts . 77

56 TESSY 5.1 Manual

4.1 Creating databases and working with the file system

4.1 Creating databases and working with the file system

The following table provides a fast overview about TESSY’s file system and databases:

Database element Function

Workspace Contains all Eclipse-related settings for TESSY (layout/size of

windows/perspectives/views) and the list of projects (the file

projects.xml). You can close TESSY, move the projects.xml

somewhere else, delete the entire directory, restart TESSY and

restore the projects.xml.

tessy.pdbx (file) Project file for the location of a TESSY project. The project can

be opened via double click. Contains the basic settings of a

project and can be renamed.

Project root Specifies the root directory of your project, so that all paths (e.g.

sources, includes, etc.) can be related to this root. Every project

will have an own project root. The project root as an absolute

path is intentionally not saved within the project file (tessy.pdbx)

which allows you to transfer projects to other computers. The

location of the project root will be detected automatically by

TESSY when opening a project. This is done by matching the

current absolute location of the PDBX file with the relative path

entry of the database location stored within the PDBX file.

Source root Optional directory to specify source and include paths to this

source root independently from the project root (e.g. if you want

source files to reside in another directory outside the project

root). The source root as an absolute path is intentionally not

saved in the project file (tessy.pdbx), only its existence is

indicated. Therefore the source root needs to be selected when

opening a project on a different computer. When opening such a

project using the command line, the source root needs to be

provided as command line argument. For more information

about the CLI mode please refer to section 6.17 Command line

interface.

Configuration file Contains appropriate target environments for the project

database which can be defined with the Test Environment Editor

and will be stored by default under

[project root]/tessy/config.

continue next page

TESSY 5.1 Manual 57

4 Tutorial: General handling

Database element Function

persist (folder) Contains the databases for the project, one for requirements and

test collections, the other one for test data.

work (folder) Contains all temporary files generated during the test process.

This entire directory can be deleted without loosing any data of

the TESSY project.

TMB files Format to store your backups, usually under

[project root]/tessy/backup.

Table 4.1: File system and databases of TESSY

4.1.1 Creating a project database

Þ Start TESSY by selecting “All Programs” > “TESSY 5.x” > “TESSY 5.x”.

Loading TESSY will take a few seconds.

The Select Project dialog will open. At top you can see the path of your workspace (see

figure 4.1).

If you already have opened a project before, TESSY will automatically open

the last project again on startup. To create a new project, select “File” >

“Select Project” in the menu bar.

Figure 4.1: Path of the workspace

58 TESSY 5.1 Manual

4.1 Creating databases and working with the file system

Þ Click on (Create Project).

The Project Configuration dialog opens (see figure 4.2).

Creating a new

project

Figure 4.2: Creating a new project

Þ Enter the name of your project, e.g. Example1.

Þ Optional: Enter a description of your project.

Þ Select a project root: Click on “…”and select a directory where your development project

resides, i.e. where source and header files are located and where a sub directory “tessy”

containing the test project shall be created (see figure 4.3).

All the project-related TESSY databases containing information on the test

environment, referenced source files, compiler, debugger, etc. will be stored

within a sub folder of the project root and all paths into your project will relate

to this root.

TESSY 5.1 Manual 59

4 Tutorial: General handling

Figure 4.3: Selecting a folder for the project root.

Þ Optional: Extend the “Advanced Settings” by clicking on the plus (see figure 4.4).

You have the following advanced option settings:Advanced

Settings

Source Root Use this option to provide an alternative root location for source

files if you want your source files to reside in another location than

the project root. In this case all path name references to source

files and include paths will automatically be collapsed using the

source root location.

Important: The source root location will be remem-

bered locally on each computer and the given abso-

lute path will by default not be stored into the TESSY
project file (tessy.pdbx).

This means that if this option is enabled and you want

to open this project on another computer, you will al-

ways be asked for the source root location during the

startup process.

continue next page

60 TESSY 5.1 Manual

4.1 Creating databases and working with the file system

Configuration

File

Enter the path to a specific configuration file or leave the field

blank to use the default configuration. TESSY will create a new

configuration file containing only the GNU/GCC compiler. Refer to

section 6.5.6 Configuration files about how to customize this

configration file.

Project

Location

You can choose a different location if you would like to locate the

test project files into another sub directory of the project root.

Important: The location has to be within the project
root directory!

Database

Location

It is recommended to use the same directory as the project

location but you can choose another sub directory of the project

root if you want to separate the project database files from the

other configuration files of your test project.

If you tick the box “Store database in user profile” the database will

be stored in a directory named using the project identifier GUID

located within the “.tessy_persist” directory within the user
profile.

Backup

Location

This directory will be used to store all backup and settings files of

your project which are vital for your project in order to restore it on

another computer. Refer to section 6.16 Backup, restore, version

control for information about files that are relevant for version

control.

It is recommended to use the default location but you can also

choose a different location preferably within the project root. It will

be used as standard for the backup and restore dialog.

Table 4.2: Options of the Project Configuration dialog

TESSY 5.1 Manual 61

4 Tutorial: General handling

The project root and source root

By default the project root contains your development project, i.e. the source files, and

one sub folder “tessy” that contains all TESSY related files.

Additionally you can specify the source root to locate source and header files outside

the project root.

TESSY will use paths relative to those root paths for all files, e.g. references to source

and config files. This ensures that you can move whole projects to new locations.

Please keep in mind that the source root location will always be remembered locally on

each computer and the given absolute path will not be stored into theTESSY project file

(tessy.pdbx). If you transfer a project with an indicated source root to another computer,

you need to provide the source root (e.g. as command line argument when running in

CLI mode). When opening such a project with the GUI, TESSY will remind you and

ask for the source root location.

62 TESSY 5.1 Manual

4.1 Creating databases and working with the file system

Figure 4.4: Creating a new project

TESSY 5.1 Manual 63

4 Tutorial: General handling

Þ Click “OK”.

Now TESSY creates automatically a sub folder “tessy” within the project root direc-

tory. This folder contains (within sub folders) the configuration file and the persistence

databases. This will take a few seconds. Afterwards TESSY will restart (if another

project was open before) and open the newly created project automatically.

4.1.2 Creating, importing, cloning, editing, deleting a project

In the Select Project dialog you can create, import, clone, edit and remove or delete your
project with selecting the project and click on the icon in the tool bar:

Creates a new project.

Imports an existing project.

Clones a project: TESSY creates a complete copy of a project and adds it to

the project list. A new name is required.

Opens the Project Configuration dialog.

Important: Project root, project location and database loca-

tion cannot be modified subsequently!

Removes a project from the workspace. If you want to delete all data including

project and database location, tick the box “Delete project contents on disk”.

Warning: Deleted files cannot be restored! Before deleting

make sure the project is not needed anymore or backup the

project as described in section 6.16 Backup, restore, version

control.

Table 4.3: Tool bar options of the Select Project dialog

64 TESSY 5.1 Manual

4.1 Creating databases and working with the file system

With a right click you can open the context menu for further options:

Figure 4.5: Context menu of the Select Project dialog

4.1.3 Creating a template project

With a right click on a project in the project list you can mark a project as “Template Project”

(see figure 4.5).

This will have the following effects:

• The project cannot be opened anymore!

• Doubleclicking the project or marking the project and click “Open Project” will start the

Project Configuration Dialog and the “Clone Project” command (see section 4.1.2 Cre-

ating, importing, cloning, editing, deleting a project).

• Doubleclicking the PDBX file of the template project will start the Project Configuration

Dialog and the “Clone Project” command.

At anytime you can remove the mark as template project. The project will

then be a normal project and you can open it as usual.

TESSY 5.1 Manual 65

4 Tutorial: General handling

4.1.4 Moving the project directory

You can move your whole project directory and then import the project again:

Þ Either double-click on the tessy.pdbx file or use the Import Project button.

TESSY will ask you, if the project was moved or copied (see figure 4.6).

Þ Answer this question correctly and click “OK”.

If the project was copied, e.g. you want to create a new project as a copy of the original

one, a new project identifier needs to be assigned to distinguish the new project from

the original one. TESSY will do this automatically.

Figure 4.6: Project identifier handling

4.1.5 Handling with equally named projects

In the “Select Project” dialog all projects are listed with name and local path.

Figure 4.7: Project Example1 is created

66 TESSY 5.1 Manual

4.1 Creating databases and working with the file system

It is possible to handle projects with equal names. The table below explains in which way
TESSY will replace projects within the projects list if they have identical names:

Status Operation Behavior and tip

Project named

’Alpha’ exists in

location ’xy’.

You create a new project

’Alpha’ in another
location.

You will get a warning:

“Project with identical name will be

removed from the project list.”

The new project appears in the project

list, the old project will be removed

from the list (but not deleted!).

If you want to open the old project

again,

Þ click on “Import” and open the old

project. In that case the newer project

will again be removed from the list.

Project ’Alpha’

exists in location

’xy”.

You try to create a new

project ’Alpha’ in the

same location.

You will get an error, it is not possible

to create the project, because two

projects cannot share the same

location.

Þ Change the location of the new

project.

Project ’Alpha’

exists in location

’xy’.

You open an existing

project ’Alpha’ (either

with click on “Import” or

within the command line

interface) in another
location ’Beta’.

You will get a note “Information:

Project ’Alpha’ replaced within the

project list.”

The second project appears in the

project list, the first project will be

removed from the list (but not

deleted!).

If you want to open the other project

again,

Þ click on “Import” and open the

other project.

Table 4.4: Handling of projects with equal names

TESSY 5.1 Manual 67

4 Tutorial: General handling

4.1.6 Using a specific environment setting

Important: This section is only recommended for advanced users that have al-

ready worked with TEE. For basic handling we recommend to continue with section

4.2 Understanding the graphical user interface and following sections and then re-

turn to this section.

TESSY will create a specific configuration file for each project database. This way you can

share the environment settings with other members of your development team. The config-

uration file is stored within your project root together with other project related files. Such a

configuration file contains only the compiler/target environments you want to use. All other

environment configurations are not visible for the user as long as this file is assigned to a

given project database.

To customize the configuration file within the Test Environment Editor (TEE)

Þ refer to section 6.5.6 Configuration files.

4.1.7 Updating the database

Warning: After the update you cannot open the project in previous versions of

TESSY!

TESSY will recognize, if an update of the database is necessary (see figure 4.8).

68 TESSY 5.1 Manual

4.1 Creating databases and working with the file system

Figure 4.8: TESSY notifies, that a database update is necessary

When you want to open the project, you will be asked to update the database (see figure

4.9):

Þ Click “Yes”.

Figure 4.9: A database update is necessary

TESSY 5.1 Manual 69

4 Tutorial: General handling

4.2 Understanding the graphical user interface

When TESSY starts the first time, the graphical user interface (GUI) will open within the

Overview perspective.

Please check the terminology shown in the figure “TESSY interface” and the explanations

beneath. This terminology will be used throughout this manual.

Figure 4.10: TESSY interface and its terminology

70 TESSY 5.1 Manual

4.2 Understanding the graphical user interface

4.2.1 Menu bar

The menu bar provides actions as “File”, “Window” etc. Within the “Help” you find the on-

line help of TESSY. Many of these actions may also be available within the context menu of

individual views, if the actions are applicable for the items within the view.

4.2.2 Tool bar

At the global tool bar of TESSY interface you can select a project, save changes etc. By

rolling over an icon with the cursor a tooltip will tell you the purpose of each icon. There may

also be individual tool bars within the views. Here you find the tools for operating, e.g. to start

the test execution .

Save all changes in any views or editors by clicking the save icon .

4.2.3 Perspectives and perspective (tool) bar

TESSY contains several perspectives to present information based on different tasks in the

test workflow (“Requirement Management”, “Overview”, “TIE” etc.). Each perspective offers

several views.

In the perspective bar (containing the perspective names) you can switch between the differ-

ent perspectives. The perspectives - from the left to the right - follow the actions taken while

preparing, running and evaluating a test.

Every perspective name has several right-click menu options (the context menu).

TESSY 5.1 Manual 71

4 Tutorial: General handling

4.2.4 Views

Figure 4.11: Test Project view within the Overview perspective

Every view in each perspective contains possibilities of configurations or provides presenta-

tions of data. Some views are common to several perspectives (such as the properties of

sources), and some are specific to one perspective (such as the plots in the TIE).

Notice that the views appear differently combined with other views, e.g. the view Test Results

within the Overview perspective is combined with the Test Items view, but within the TDE

perspective it is combined with theTest Project view. The reason for the different combinations

is to give you a fast overview and comparison between various information within each project

step.

You can change the appearance of views for you own needs and open views of one perspec-

tive into another perspective:Adding views to

a perspective
Þ Activate (open) the perspective where you want to add a view.

Þ Click “Window” > “Show View”.

A window displaying all views will open (see figure 4.12).

Þ Select the view you want to open.

Þ Click “OK”.

The selected view is added to the active perspective.

72 TESSY 5.1 Manual

4.2 Understanding the graphical user interface

Figure 4.12: Adding views to a perspective

Change the position of views with drag and drop: Changing view

position
Þ Click on a name of a view and move it where you like: You can move views to another

location within the same group of views or into another group of views or even outside

the current window.

Þ Right-click on the perspective switch and choose “Reset” to switch back to the original

positions of all views of the respective perspective (see figure 4.13).

TESSY 5.1 Manual 73

4 Tutorial: General handling

Figure 4.13: Move the views separately. To switch back, use “Reset”.

To switch back all positions of perspectives and views:Resetting

workbench
Þ Choose “Window” > “Reset Workbench” from the menu bar (see figure 4.14).

Figure 4.14: To switch back all positions of views and perspectives use “Reset Workbench”.

You can maximize and minimize views for better visibility.Maximize and

minimize views

74 TESSY 5.1 Manual

4.2 Understanding the graphical user interface

To maximize a view,

Þ use the button within the right corner (see figure 4.15) or double-click on the tab of the

view.

Figure 4.15: Minimizing and maximizing views

The view will be maximized and other views of the perspective will be minimized, displayed

by the view symbol on the left and the right (see figure 4.16).

To restore all views,

Þ click on the “Restore”-button on the upper left side.

Figure 4.16: Maximized view with minimized views on the right and the restore-button on
the left

TESSY 5.1 Manual 75

4 Tutorial: General handling

There are navigation views that present hierarchical structured data. Selections on such tree

items may cause other views or the editor pane to change the information being displayed.

All views are context sensitive: If you select an item within one view, another view

might display other information. If something is not displayed correctly, make sure

you selected the desired item.

4.2.5 Status bar

The status bar provides status information about the application and current status, e.g. the

directory of the project root and the configuration file.

76 TESSY 5.1 Manual

4.3 Using the context menu and shortcuts

4.3 Using the context menu and shortcuts

4.3.1 Context menu

Most contents, tabs etc. have options that are displayed in the context menu, which is re-

trieved with a right click. It shows main operations as “Copy”, “Paste”, “Delete” etc.

The context menu is context sensitive and changes as different items are selected (see figure

4.17).

Figure 4.17: Using the context menu with a right click.

4.3.2 Shortcuts

TESSY allows it to operate with several keyboard shortcuts. A mouseover over the icons

of the view toolbar shows a tooltip explaining its function and also provides the shortcut if

available.

TESSY provides a complete list of shortcuts. To open it just click > “Help” in the menu

bar and then > “Key Assist…” in the pull down menu.

TESSY 5.1 Manual 77

4 Tutorial: General handling

Important: For using shortcuts make sure that the current view is active (i.e. has

focus). Otherwise shortcuts will not work.

Warning: You cannot reverse the deleting of data. Before deleting make sure this

database is really not needed anymore.

Some main shortcuts within TESSY:

Function Shortcut / Keys Comment

Copy Ctrl + C

Cursor positioning

right

Tab

alternatively

Ctrl + right arrow

key

Moves the cursor to the next input section on

the right side of the line.

Only within TDE.

Cursor positioning

left

Shift + Tab

alternatively

Ctrl + left arrow key

Moves the cursor to the input section on the

left side of the line.

Only within TDE.

Cut Ctrl + X Only possible for folders, modules and (syn-

thetic) test objects, not for test items.

Delete Del Only possible if the item to delete does not

contain any data or folders or modules!

Only manually created test cases can be

deleted! You cannot delete test cases created

by CTE. This prevents possible inconsisten-

cies within the CTE document.

Generate test

details report

Ctrl + R

New folder Shift + Ins

New module Ins Only possible, if a test collection or folder is

selected.

continue next page

78 TESSY 5.1 Manual

4.3 Using the context menu and shortcuts

Function Shortcut / Keys Comment

New test object Control + Ins

Paste Ctrl + V

Rename F2

Save Ctrl + S

Select all Ctl + A

Start test

execution

Ctrl + E Executes a test object.

Table 4.5: Shortcuts and key functions

Shortcuts for certain views differ. More precise descriptions can be found in the view

related sections within chapter 6 Reference book: Working with TESSY.

TESSY 5.1 Manual 79

5 Tutorial: Practical exercises

This chapter will show you on the basis of prepared exercises how to work with TESSY:

• The Quickstart 1: Unit test exercise is_value_in_range is a very basic example of how

to operate with TESSY.

• The Quickstart 2: The Classification Tree Editor (CTE) gives a short and easy introduc-

tion of operating with the Classification Tree Editor (CTE). It continues the Quickstart

1.

• The Quickstart 3: Component test exercise interior_light shows on the basis of a simple

example how component testing works with TESSY.

• The Quickstart 4: Exercise C++ gives a short and easy introduction of handling with a

C++ source file.

• The Quickstart 5: Test driven development (TDD) gives a short introduction into test

driven development with TESSY. You should be familiar with the overall handling of

TESSY before doing this exercise.

5.1. Quickstart 1: Unit test exercise is_value_in_range 82

5.1.1. Creating a test project . 83

5.1.2. Specifying the target environment . 85

5.1.3. Adding the test object and analyzing the C-source file 87

5.1.4. Editing the test object interface . 90

5.1.5. Designing test cases . 91

5.1.6. Adding test cases and test steps . 92

5.1.7. Entering test data . 93

5.1.8. Executing the test . 97

5.1.9. Repeating the test run with coverage instrumentation 98

5.1.10.Analyzing the coverage . 100

5.1.11.Creating a Test Details Report . 104

5.1.12.Repeating the test run with requirements . 108

5.1.13.Reusing a test object with a changed interface 121

80 TESSY 5.1 Manual

5.2. Quickstart 2: The Classification Tree Editor (CTE) 130

5.2.1. The CTE tree elements . 131

5.2.2. Working with the CTE . 133

5.2.3. Entering test data . 133

5.2.4. Creating test cases . 135

5.3. Quickstart 3: Component test exercise interior_light 143

5.3.1. Creating the test project . 145

5.3.2. The heartbeat function . 146

5.3.3. Preparing the test interface . 149

5.3.4. Adding test cases . 151

5.3.5. Editing data . 152

5.3.6. Configuring the work tasks . 154

5.3.7. Designing scenarios . 154

5.3.8. Executing the scenarios . 160

5.3.9. Evaluating the scenarios . 161

5.4. Quickstart 4: Exercise C++ 162

5.5. Quickstart 5: Test driven development (TDD) 167

TESSY 5.1 Manual 81

5 Tutorial: Practical exercises

5.1 Quickstart 1: Unit test exercise is_value_in_range

In this exercise we will get to know the basic functionality of testing with TESSY. We will

operate with the example “is_value_in_range” which will give you a fast introduction and an

overview as well as the terms of importance.

Figure 5.1: Operational sequences in TESSY

82 TESSY 5.1 Manual

5.1 Quickstart 1: Unit test exercise is_value_in_range

A unit test in TESSY is divided into the following central test activities: Central test

activities
• Determining test cases.

• Entering test data and expected values.

• Executing the test.

• Evaluating and documenting the test.

Usually you would import your requirements first. To keep this exercise understandable

for beginners, we will first exercise a simple project, then import some basic require-

ments and restart the test!

We will now follow a simple source code example to show how to exercise those activities

with TESSY.

Example “is_value_in_range”

A start value and a length define a range of values.

Function: Determine if a given value is within the defined range or not. Only integer numbers

are to be considered.

5.1.1 Creating a test project

If you have not created the project “Example1” yet, do as follows:

To understand TESSY´s file system and databases, consult section 4.1 Creating

databases and working with the file system.

Þ Start TESSY by selecting “All Programs” > “TESSY 5.x” > “TESSY 5.x”.

Þ If the “Open Project” dialog will open, click on (Create Project).

If another project is opened within TESSY, click “File” > “Select Project” > “New Project”

and then click on .

The Project Configuration dialog opens (see figure 5.2).

TESSY 5.1 Manual 83

5 Tutorial: Practical exercises

Figure 5.2: Creating the new project “Example1”.

Þ Enter Example1 as name of the project.

Þ Leave the automatically created Project Root as it is (default

C:\[User]\Projects\TESSY\[Projectname]) and click “OK”.
TESSY now creates the project “Example1” (see figure 5.3). This will take a few sec-

onds.

Figure 5.3: New project “Example1” is created

84 TESSY 5.1 Manual

5.1 Quickstart 1: Unit test exercise is_value_in_range

Þ Click “Open Project”.

TESSY now opens your project. This will take a few seconds.

The project “Example1” is opened within the Overview perspective. You can create different Organizing

“Example1”folders within a test collection, each containing modules with various test objects. To keep it

simple, we will create now one test collection with one folder.

We start within the view “Test Project”:

Þ In the Test Project view click on the icon (New Test Collection) in the tool bar of the

view.

Þ Enter Is_value_in_range and press the “Enter”-key.

Þ Click on (New Folder), enter ExampleFolder, click “Enter”.

Þ Click on (New Module), enter ExampleModule, click “Enter”.

The module relates to one or many source files which are to be tested.

Figure 5.4: Test collection “Is_value_in_range” with an example folder and module

Rename or delete a module or a folder by using the context menu (right-click > “re-

name” or “delete”) or the key F2.

5.1.2 Specifying the target environment

Usually at this point you will have to specify the target environment, that is to determine the

compiler, the target and the microcontroller. You will do that in the “Test Environment Editor”

which we will get to know later.

TESSY 5.1 Manual 85

5 Tutorial: Practical exercises

Please notice beneath in the Properties view at tab “General” that the GNU GCC compiler is

already selected for this module (see figure 5.5), which is enough for our example.

Figure 5.5: GNU GCC compiler is selected by default.

Now we will add the source file to the module. The source file contains the C-function to be

tested:C-source file

Figure 5.6: The source code of the C-Function to be tested

86 TESSY 5.1 Manual

5.1 Quickstart 1: Unit test exercise is_value_in_range

5.1.3 Adding the test object and analyzing the C-source file

We will use the example C-source file “is_val_in_range.c” which is stored under
“C:\Program Files\Razorcat\TESSY_5.x\Examples\IsValueInRange”.

Copy the C-source file, paste it in the project root an add it to the module:

Þ Open the Windows Explorer.

Þ Copy the source file “is_val_in_range.c” in a folder which is located in the project

root, e.g. “c:\MyProjects\TESSYProjectABC\sources”.

It is useful to relate all sources, includes etc. to the project root. You have a

better overview about all sources, includes etc.

Þ Switch back to TESSY.

Þ In the Test Project view select the module (“Example Module”).

Þ In the Properties view switch to tab “Sources”.

Þ Click on (Add Source).

Adding the

C-source

Figure 5.7: Adding the C-source file.

TESSY 5.1 Manual 87

5 Tutorial: Practical exercises

Þ Select the source file “is_val_in_range.c” from the folder where you just pasted the

source.

Þ Click “Open”. The C-source file will be added.

Þ In theTest Project view above click on (Analyze Module) to start the module analysis

(see figure 5.8).

Figure 5.8: Analyzing the module, that is the C-source file.

TESSY now analyzes the C-source file, this will take a few seconds. After successful pro-

cessing,

Þ click on the white arrow in front the module: .

TESSY will as well analyze the C-source file by just clicking on the white arrow after

adding the C-source file.

Now all functions which were defined in the C-source file are displayed as children of the

module above within the Test Project view (see figure 5.9).

88 TESSY 5.1 Manual

5.1 Quickstart 1: Unit test exercise is_value_in_range

Figure 5.9: The function of the C-source is displayed as child of the module.

Our sample C-source file contains only one function, our test object “is_value_in_range”.

The term “test object” indicates the functions within the module we are attempting to

test.

TESSY 5.1 Manual 89

5 Tutorial: Practical exercises

5.1.4 Editing the test object interface

Þ Switch to the TIE (Test Interface Editor).

Figure 5.10: Perspective TIE - Test Interface Editor

Now we can edit the interface information for every test object and determine which valuesDetermine

passing

directions

are input and which ones are output variables. Input values are all interface elements that

are read by the test object. Output values are written by the test object.

Upon opening themodule, TESSYwill try to set the default passing directions (input or output)

automatically. You can change these default interface settings to your needs.

In our sample the passing directions are already defined, you do not have to take

actions.

Þ In the Interface view open the Parameter paragraph to see the inputs and output values

that are already defined in our example (see figure 5.11).

90 TESSY 5.1 Manual

5.1 Quickstart 1: Unit test exercise is_value_in_range

Figure 5.11: The inputs and outputs are already defined

5.1.5 Designing test cases

Usually now you would design the test cases, either manually or within the Classification Tree

Editor (CTE), based on specifications of your test object.

Since the CTE is a subject for its own, we will not make use of the CTE in this example, but

simply enter some ad-hoc test data manually.

To learn about the CTE refer to section 6.8 CTE: Designing the test cases or follow

the Quickstart 2: The Classification Tree Editor (CTE).

TESSY 5.1 Manual 91

5 Tutorial: Practical exercises

5.1.6 Adding test cases and test steps

Now we will add three test cases each with one test step within the Test Items view:

Þ Switch to the Overview perspective and the Test Items view.

Figure 5.12: Test Items view

Þ Select the test object in the Test Project view.

Þ In the Test Items view click on (New Test Case).

The first test case is created and a test step is automatically added.

In TESSY every test case has at least one test step.

Þ Add two further test cases.

Þ Expand the test cases by clicking on the arrows in front of the test cases.

Adding test

cases

Figure 5.13: Three test cases were added in the Test Items view

92 TESSY 5.1 Manual

5.1 Quickstart 1: Unit test exercise is_value_in_range

Please notice the following habits of this view:

• The first number is the number of the test case, the number in brackets shows the quantity

of the test steps included.

• Test case numbers will be counted continuously: If you delete test cases, new test cases

will get a new number and existing test cases will not be renumbered.

• If you cannot click on “New Test Case” or “New Test Step” because the icons are inactive,

you might be in the wrong selection: Select the test object within the Test Project

view, then select the Test Items view.

5.1.7 Entering test data

Now we will define some input and output values:

Þ Switch to the perspective “TDE - Test Data Editor”. The TDE will also open with a double

click on a test case or a test step.

In the Test Data view you can see the test cases and steps in tabular form.

Þ Under “Inputs” click on the arrow to open “struct range r1”.

Þ For test case 1 (1.1) enter 3 for “range_start”.

Þ Enter 2 for “range_len”.

Þ Enter 4 for “v1”.

Þ Click on (Save) to save your inputs.

After saving, the symbol of the test object in the Test Project view as well as the symbol

of the test case in the Test Items view turns yellow to indicate that the test case is ready

to run (see figure 5.14).

Þ Under “Outputs” click on the arrow ahead “Return”.

Þ Enter “yes” for the return value.

TESSY 5.1 Manual 93

5 Tutorial: Practical exercises

Figure 5.14: Data is entered, test step turns yellow and test case is ready to run.

Please notice the changes of the test object icon to indicate different conditions:

Empty gripper: Test object is analyzed but has no test case.

Gripper with white object: Test object has test cases but no data.

Gripper with yellow object: At least one test step is ready to be executed.

94 TESSY 5.1 Manual

5.1 Quickstart 1: Unit test exercise is_value_in_range

Þ Now enter data for the other two test cases as shown in table 5.1.

Test step: 1.1 2.1 3.1

range_start: 3 20 0

range_length: 2 8 5

v1: 4 22 6

Expected return: yes no no

Table 5.1: Entering data for test object is_value_in_range

• Test case 1.1: The range starts at 3 and has a length of 2. Therefore, the range ends at
5 and the given value 4 is supposed to be inside of the range (yes).

• Test case 2.1: The range starts at 20 and has a length of 8. Therefore, the range ends
at 28 and the given value 22 is supposed to be inside of the range. Because we want to

force an incorrect output, we state this to be not inside of the range (no).

• Test case 3.1: The range starts at 0 and has a length of 5. Therefore, the range ends at
5 and the given value 6 is supposed NOT to be inside of the range (no).

TESSY 5.1 Manual 95

5 Tutorial: Practical exercises

Figure 5.15: Entering data for test object is_value_in_range

The test step icons in the Test Items view will now turn to yellow (see figure 5.16). This

indicates that we are now ready to run the test.

Figure 5.16: The test cases are ready to test

96 TESSY 5.1 Manual

5.1 Quickstart 1: Unit test exercise is_value_in_range

5.1.8 Executing the test

Þ Click on (Start Test Execution) in the tool bar of the Test Project view.

A progress dialog will be shown while TESSY generates, compiles and links the test

driver and runs the test. This will take a few seconds.

After the test run, test case icons (within TDE) should be (see figure 5.17):

• Within the Test Data view the second test step is marked with a red cross and the

expected result “no” is marked red to indicate, that the result did not match the expected

result (the actual result is “yes”).

• Within theTest Project view the test collection, folder, module and test object aremarked

with a red cross to indicate, that not all results did match the expected results.

• The Test Items view indicates with a red cross, that test case 2 did not match the ex-

pected result.

Figure 5.17: TDE after test run is_value_in_range

Þ Switch to the Overview perspective.

TESSY 5.1 Manual 97

5 Tutorial: Practical exercises

Figure 5.18: Test results of is_value_in_range

You can see the results of every test step within the Test Results view.

5.1.9 Repeating the test run with coverage instrumentation

To analyze the source code coverage of the test, repeat the test run with the branch, MC/DC

and MCC-coverage instrumentation:

Þ In the tool bar of the Test Project view click on the arrow next to the Execute Test icon

and select “Edit Test Execution Settings…” .

Þ In the following dialog tick the boxes “Run” (default) and “Create New Test Run”.

Þ Choose the instrumentation “Test Object” and untick the box “Use preselected cover-

age”.

Þ Tick the boxes for “Branch Coverage (C1)” and “Modified Condition / Decision Coverage

(MC/DC)” (see figure 5.19).

Þ Click on “Execute”.

98 TESSY 5.1 Manual

5.1 Quickstart 1: Unit test exercise is_value_in_range

Figure 5.19: Selecting Branch and MC/DC Coverage for test run

A progress dialog will be shown while TESSY generates, compiles and links the test driver

and runs the test. This will take a few seconds.

Figure 5.20: Execute Test dialog while running the test

TESSY 5.1 Manual 99

5 Tutorial: Practical exercises

5.1.10 Analyzing the coverage

Þ Switch to the Coverage Viewer (CV) perspective.

Analyzing with

the CV

Figure 5.21: The Coverage Viewer displays the coverage of is_value_in_range

The CV shows the results of the coverage measurement of a previously executed test.

100 TESSY 5.1 Manual

5.1 Quickstart 1: Unit test exercise is_value_in_range

5.1.10.1 The Flow Chart view

The Flow Chart view displays the code structure and the respective coverage in graphical

form. Within each flow chart, you will see the decisions and branches of the function being

displayed. Green and red colors indicate whether a decision has been fully covered or a

branch has been reached.

5.1.10.2 The Branch (C1) Coverage view

The Branch C1 Coverage view (see figure 5.22) displays the branch coverage for each indi-

vidual test case and test step as well as the total coverage for all test cases and test steps.

Figure 5.22: Branch coverage is_value_in_range

TESSY 5.1 Manual 101

5 Tutorial: Practical exercises

5.1.10.3 The MC/DC Coverage view

The MC/DC-Coverage view displays the coverage of the currently selected decision within

the Flow Chart view (see figure 5.23). If no decision is selected (as initially when starting the

CV), the MC/DC Coverage view is empty.

Figure 5.23: Decision coverage is_value_in_range

The current example is_value_in_range has only simple decisions, for which MC/DC is the

same as branch coverage.

102 TESSY 5.1 Manual

5.1 Quickstart 1: Unit test exercise is_value_in_range

5.1.10.4 Analyzing

In our example you can see in the flowchart, that

• three test cases were executed (each with one test step).

• the if branch on the left of the first decision was not reached and is therefore marked

red.

• the first decision was not fully covered, so it is marked red.

• the second decision was fully covered and is therefore marked green.

• the else branch on the right of the second decision was reached two times, the else

branch was reached once.

Þ Select the red branch of the first decision (the if branch).

The respective code section is highlighted within the source code view (see figure 5.24).

This allows finding out the execution path of the selected test step.

Figure 5.24: Code section of the if branch of the first decision

TESSY 5.1 Manual 103

5 Tutorial: Practical exercises

Þ Select the second decision.

The respective code section is highlighted within the source code view (see figure 5.25).

Figure 5.25: Code section of the second decision

5.1.11 Creating a Test Details Report

Þ In the Test Project view of the Overview perspective click on the arrow next to the Gen-

erate Report icon and select “Edit Test Details Report Settings…” .

Þ In the dialog you can select the Report Options you need.

104 TESSY 5.1 Manual

5.1 Quickstart 1: Unit test exercise is_value_in_range

Figure 5.26: Selecting a folder or creating a new folder for Test Details Reports

Þ Click on “OK” and “Generate”.

TESSY will now create the report within the new folder. This will take a few seconds.

When finished, TESSY will open the report file (PDF) automatically.

TESSY 5.1 Manual 105

5 Tutorial: Practical exercises

Important: The generation and opening of reports requires a third party PDF

viewer. If you get the error message “No matching program found for the file…”, no

such viewer was found.

This either means that there is no suitable PDF viewer installed on your computer.

The other possible reason is that you need to associate PDF files with your third

party PDF software in Windows 10.

After the source of error is found and fixed you need to generate the report again.

ATest Details Report basically looks like this:

Figure 5.27: Content of the test report is_value_in_range

Now you have completed your first test project!

If you use a Version Control System (VCS) providing keyword expansion to embed

version control information in your source files, TESSY will display such expanded

keywords within the test report.

The following keywords are available: $Revision$ (Revision number), $Author$ (User

who checked in the revision) and $Date$ (Date and time stamp for the revision).

106 TESSY 5.1 Manual

5.1 Quickstart 1: Unit test exercise is_value_in_range

5.1.11.1 Change the default Test Report Options for your project

It is possible to permanently change the default report settings for your project, e.g. Output

Directories, File Names and Logo Image. This applies for all possible reports, not only the

Test Details Report.

You may also change the default Razorcat logo within the reports to your own com-

pany logo with your logo image file (PNG, JPG or GIF).

To set the Output Directory for the Test Details Report for your project permanently:

Þ In the menu bar select “Window” > “Preferences” > “Test Report Options”.

Figure 5.28: The Test Report Options in the Preferences

TESSY 5.1 Manual 107

5 Tutorial: Practical exercises

Þ Click on “Browse…” in the line “Test details Report” to select the desired directory or

change the path manually.

Þ Click “OK” to safe your settings.

Important: It is not recommended to use HTML or Word as an output format

because of potential layout issues. They are provided as complementary helper

formats only and without further support.

For more information about creating various reports please refer to section 6.2.3.19

Creating reports.

5.1.12 Repeating the test run with requirements

We will now import some very basic requirements and repeat some steps of this exercise.

This way you get to know the feature of requirement management and you can consolidateRequirement

Management the just learned workflows.

5.1.12.1 Importing requirements

Þ Copy the example requirements document “Is Value In Range Requirements.txt” into a

folder of your test project “TESSYProjectABC”. It is located within the TESSY installation

directory

C:\Program Files\\Razorcat\TESSY_5.x\Examples\IsValueInRange.

Þ Switch to the Requirement Management perspective.

Þ Right-click within the blank RQMT Explorer view and select “Import” from the context

menu (see figure 5.29).

108 TESSY 5.1 Manual

5.1 Quickstart 1: Unit test exercise is_value_in_range

Figure 5.29: Importing a requirement

In the following Import dialog you can import various file formats. In our example we select

the file we just copied into our project:

Þ Click on “…” and select the file “Is Value In Range Requirements.txt” from your project.

Þ Leave the File Content Type and the Target Document as it is and click “OK” (see figure

5.30).

TESSY 5.1 Manual 109

5 Tutorial: Practical exercises

Figure 5.30: Import dialog

The newly imported requirement document will be displayed in the RQMT Explorer view (see

figure 5.31).

Figure 5.31: The new requirement document

Þ Right-click the document and select “Properties” from the context menu.

Þ Change the alias to “IVIR” and click “OK” (see figure 5.32).

The document alias will be used for reporting, in order to have an abbreviation of

the document name when building the requirement identifier, e.g. IVIR-[1.0] in our

example.

110 TESSY 5.1 Manual

5.1 Quickstart 1: Unit test exercise is_value_in_range

Figure 5.32: Changing the alias of the new requirement document

5.1.12.2 Committing the requirements document

Before linking any tests to a requirement, the respective requirements document needs to Committing

RQMTs

document

be checked in as initial revision:

Þ Select the document and click on (Commit Changes) in the global tool bar.

Þ Enter “Initial revision” as commit comment, make sure that ”Increment major version“ is

ticked and click “OK” (see figure 5.33).

An initial revision of the requirement document will be created.

Figure 5.33: Comment for the initial revision of the commit

TESSY 5.1 Manual 111

5 Tutorial: Practical exercises

TESSY manages different versions of a requirements document. You can track any

changes either from importing updated versions or from any modifications that you

did directly within TESSY.

5.1.12.3 Linking test cases with requirements

Þ Switch to the Overview perspective and select the test object.

Þ Select the Requirements Coverage view.

Þ Click on (Always show unlinked Requirements) in the Requirements Coverage view.

The view shows the imported requirements and the module, test object and test cases

in a tree-based arrangement.

Important: If the view says “No requirements available”, select the test

object in the Test Project view!

Use the toggle buttons on the right to link modules, test objects or test cases to require-

ments:

Þ Link the first test case with the first requirement.

Þ Link the second test case with the second requirement (see figure 5.34).

The third requirement is not linked.

112 TESSY 5.1 Manual

5.1 Quickstart 1: Unit test exercise is_value_in_range

Figure 5.34: Linking test cases with requirements

Remember the values of our test cases:

• Test case 1.1: range start 3, length 2, given value 4, supposed to be inside of the range

(yes)

• Test case 2.1: range start 20, length 8, given value 22. Because we wanted to force an

incorrect output, we stated this to be not inside of the range (no)

Þ Switch to the TDE perspective.

Þ In the Test Item view select the first test case and have a look at the Test Definition view:

It shows the requirements we just linked with our test cases.

Þ Select the second test case.

The second requirement will be displayed (see figure 5.35).

TESSY 5.1 Manual 113

5 Tutorial: Practical exercises

Since we did not link any requirement to the third test case, the “Linked Requirements”

will be empty when selecting the third test case.

Figure 5.35: Test Definition view within TDE with linked requirement

5.1.12.4 Creating a planning coverage report

At this stage we can already generate a report showing the planned test case for our require-

ments:

Þ Switch to the Test Project view of the Overview perspective and click on the arrow next

to the Generate Report icon .

Þ Select “Edit Planning Coverage Report Settings…” (see figure 5.36).

Figure 5.36: Editing the settings of a Planning Coverage Report

Þ A dialog for the settings for the Planning Coverage Report will open.

114 TESSY 5.1 Manual

5.1 Quickstart 1: Unit test exercise is_value_in_range

Figure 5.37: Dialog of the settings for the Planning Coverage Report

Planning

Coverage

Report

TESSY 5.1 Manual 115

5 Tutorial: Practical exercises

Þ Select an output directory for the report (default: C:\TESSY\report).

Þ Four Report Options are selected by default (see figure 5.37).

Þ Select the Requirement.

Þ Do NOT select any Test Means.

Þ Click on “Generate”.

A planning coverage report will be created.

Figure 5.38: Planning coverage report of the IVIR requirement document

116 TESSY 5.1 Manual

5.1 Quickstart 1: Unit test exercise is_value_in_range

The report shows the available requirements and the linked test cases. It provides an overview

about the planned tests if all requirements are covered by at least one test case.

Since we have links to two of our requirements, the resulting requirement coverage should

be as shown above.

Notice the usage of the requirement document name and alias within the report! It

is important to select an appropriate alias in order to get useful report outputs.

We have planned test cases for the first two requirements, whereas the third requirement

is not yet linked with any test case, because there are no tests available to validate this

requirement.

5.1.12.5 Executing the test and examining the coverage

We will now execute our tests again to see the results of the test cases with respect to the

linked requirements within the execution coverage report.

Þ Switch to theOverview perspective and execute our test object is_value_in_range again:

Click on the Execute Test icon .

Þ Generate a test details report to review the results on test object level: Click on the

arrow next to the Generate Report icon (see figure 5.39).

Figure 5.39: Generating a Test Details Report

TESSY 5.1 Manual 117

5 Tutorial: Practical exercises

The report will open automatically.

Þ Have a look at the second page.

The report will show additional paragraphswith the linked requirements after the overview

pages and for each test case (see figure 5.40):

Test Details

Report

Figure 5.40: Part of the generated test report of is_value_in_range

Now we will generate a coverage report showing the test case results with respect to ourExecution

Coverage

Report

requirements:

Þ In the global tool bar click on the arrow next to the Generate Report icon and

select “Generate Execution Coverage Report” (see figure 5.41).

118 TESSY 5.1 Manual

5.1 Quickstart 1: Unit test exercise is_value_in_range

Figure 5.41: Creating an Execution Coverage Report

TESSY creates the coverage report showing the available requirements and the results

of the linked test cases. It provides an overview about the current test status, e.g. if

tests for any requirements are failed.

Since one of our test cases was passed while the other one was failed, the resulting

requirement coverage should be as in figure 5.42.

Test Coverage

Report

TESSY 5.1 Manual 119

5 Tutorial: Practical exercises

Figure 5.42: Coverage Report of is_value_in_range

The first requirement has one test case linked which was successfully executed, the second

requirement has also one test case linked, but this one failed. The third requirement has still

no test case assigned.

120 TESSY 5.1 Manual

5.1 Quickstart 1: Unit test exercise is_value_in_range

Test Coverage States

Test coverage state Meaning

No tests available No test linked to this requirement.

One or more tests planned At least one test is linked to this requirement, but none of

them have been executed.

Some tests failed Some of the tests linked to this requirement have been ex-

ecuted and there were failed results.

Some tests passed Some of the tests linked to this requirement have been ex-

ecuted and all of them yield passed results.

All tests executed, some

failed
All tests linked to this requirement have been executed but

some of them have failed.

All Tests passed All tests linked to this requirement have been executed and

all yield passed results.

Table 5.2: Meaning of the Test Coverage States

Now you successfully finished the exercise is_value_in_range.

5.1.13 Reusing a test object with a changed interface

If the interface of the test object changes, TESSY will indicate the changes with specific test

readiness states. With the Interface Data Assigner (IDA) you can assign the elements of a

changed (new) interface to the elements of the old one. Using IDA

In this section we will change the interface of the test object by editing the C-source and

exercise a reuse operation within the IDA.

Important: Make sure to keep the original C-source file “is_val_in_range.c” and

edit a copy. Do not change the original file in folder “C:\Program Files\Razor-

cat\TESSY_5.x\examples\IsValueInRange”!

TESSY 5.1 Manual 121

5 Tutorial: Practical exercises

5.1.13.1 Changing the interface of the test object

The target of this section is to show you the three different test readiness states “changed”,

“deleted” and “new”.

Therefore we will first change a test object and add two new test objects called “delete” and

“new”. In a second step we will remove the “delete” object so it appears as deleted. The names

are chosen to illustrate the test readiness states.

Þ Switch back to the Overview perspective.

Figure 5.43: Overview perspective after test run (with requirements)

Þ Select the module and “Edit Source” from the context menu (see figure 5.44).

122 TESSY 5.1 Manual

5.1 Quickstart 1: Unit test exercise is_value_in_range

Figure 5.44: Use the context menu to edit a source

The C-source is opened.

Þ Select the line “result is_value_in_range (struct range r1; value v1)” (see figure

5.45).

TESSY 5.1 Manual 123

5 Tutorial: Practical exercises

Figure 5.45: Editing the C-source file is_val_in_range.c

Þ Edit the line as shown in figure 5.46

Figure 5.46: Changed C-source file of is_value_in_range

Þ Now add a “delete” object and a “new” object as shown in figure 5.47

Changing the

C-source

124 TESSY 5.1 Manual

5.1 Quickstart 1: Unit test exercise is_value_in_range

Figure 5.47: Adding a “delete” and “new” object

Þ Save the changes with “File” > “Save” and close the file.

Þ Click on to analyze the module.

In the Test Project view you can see now three test objects with different test readiness

states (see figure 5.48):

Figure 5.48: Changed and new test objects of is_value_in_range

The test object is_value_in_range has changed. You see the test object, but there

is no operation possible. You have to start a reuse operation.

The test objects “deleted” and “new” are newly available since the last interface

analysis. You have to add test cases, test steps and enter data for a test.

TESSY 5.1 Manual 125

5 Tutorial: Practical exercises

Deleted test objects that did not contain any test cases and test steps are not dis-

played anymore because they are considered as not important. If you want to display

a deleted test object, you have to add at least one test case and one test step!

Before deleting the test object “deleted”, we will have to add some test cases with test steps:

Þ Switch to the Test Item view and add a test case and a test step.

Þ Switch to the Overview perspective and to the Test Project view.

Þ Select the module and “Edit Source” from the context menu.

Þ Remove the test object “deleted” as shown in figure 5.49.

Figure 5.49: Remove the code for test object “deleted”.

Þ Save the changes with “File” > “Save” and close the file.

Þ Click on to analyze the module.

In the Test Project view you can see now three test objects with three different test

readiness states (see figure 5.50):

126 TESSY 5.1 Manual

5.1 Quickstart 1: Unit test exercise is_value_in_range

Figure 5.50: Changed and new test objects of is_value_in_range

The test object is_value_in_range is still displayed as changed since there was no

reuse operation yet.

The test object “deleted” has been removed. You still see the object, but there is no

operation possible.

The test object “new” is not shown anymore as “newly available”, because the last

interface analysis already detected the object as added.

Important: Note that removed and changed test objects require a reuse operation

before you can further operate on them!

5.1.13.2 Assigning the changed interface of the test object

Warning: If you do not assign the interface object, you will loose the test data

entered for parameter v1 and the global variable v1 will have no values after the

reuse operation!

Þ Switch to IDA perspective.

Þ Double-click the test object “is_value_in_range” in the Test Project view to assign its

interface.

TESSY 5.1 Manual 127

5 Tutorial: Practical exercises

Please notice (see figure 5.51):

• On the right side within the IDA perspective you see the Compare view with the test object

is_value_in_range.

• Within the Compare view you can see the old interface of our test object

is_value_in_range and the new one. The red exclamation mark within the new interface

indicates the need to assign this interface object before starting the reuse.

• The title of the view shows the old name versus the newly assigned name. In our case

the names are the same since only the interface did change.

Figure 5.51: Changed, deleted and new test object of is_value_in_range

Þ Assign the interface object “value v1” either by using the context menu or just drag and

drop from the left side (see figure 5.52).

128 TESSY 5.1 Manual

5.1 Quickstart 1: Unit test exercise is_value_in_range

Figure 5.52: Use drag and drop in IDA

The red exclamation mark turns to a green check .

Þ Commit the assignments by clicking on (Commit) in the menu bar of the Compare

view.

The data of all test cases and test steps will be copied from the old interface to the

current test object interface.

The test object changes to yellow to indicate that all test cases are ready to be

executed again.

Please notice the following habits:

• Removed and changed test objects require a reuse operation before you can further op-

erate on them.

• Those test objects that remained unchanged will automatically be reused, e.g. they will

be ready to use without further activities required.

• Removed test objects will only be displayed as “removed”, if they did contain any test cases

and test steps.

TESSY 5.1 Manual 129

5 Tutorial: Practical exercises

5.2 Quickstart 2: The Classification Tree Editor (CTE)

To understand the handling and create a simple classification tree we consider some aspects

from the Quickstart 1: Unit test exercise is_value_in_range.
3.2 The

Classification Tree
Method (CTM)

Important: In this chapter we will continue with the quickstart example

“is_value_in_range”. If you have not done the exercise, proceed with the Quickstart

1: Unit test exercise is_value_in_range up to section Designing test cases.

This manual provides general information about the The Classification Tree Method

(CTM) in the chapter ’Basic knowledge’ as well as a detailed description of the CTE

in section 6.8 CTE: Designing the test cases within ’Working with TESSY’.

Switch to the CTE perspective to get to the automatically generated tree of the quickstart

example “is_value_in_range”.
6.8 CTE:

Designing the test
cases

Figure 5.53: Automatically generated tree with the root “is_value_in_range” in the CTE
perspective

130 TESSY 5.1 Manual

5.2 Quickstart 2: The Classification Tree Editor (CTE)

This tree within the CTE perspective (see figure 5.53) is generated based on the relevant

interface elements.

Important: Please note that Interface elements can be set to IRRELEVANT in the

TIE perspective and these elements will be omitted in the generated tree.

5.2.1 The CTE tree elements

The tree elements of the automatically generated tree follow a basic structure. First of all, it

is categorized into ”Input“ and ”Output“ (see figure 5.54).

Figure 5.54: Interface elements categorized into ”Inputs“ and ”Outputs“

On the next level the interface elements are further subdivided into parameters, globals etc.

With the following levels the composite types, i.e. structures, unions or pointers, are broken

down into atomic types such as integers, floating point numbers, enumerations, etc.

More information about the automatically generated tree can be found in subsection

6.8.6.6 Automated tree generation based on function interface.

Within the “Inputs” subtree:

The leaves of this part of the tree are always child elements of atomic types and those are

common values with specific meaning, like zero, negative value next to zero, positive value

next to zero, minimal value of datatype and maximal value of the datatype (see figure 5.55).

TESSY 5.1 Manual 131

5 Tutorial: Practical exercises

Figure 5.55: Child elements of an atomic type on the inputs side of the subtree

Within the “Outputs” subtree:

Values of the atomic types will not be predicted on this side of the tree but there will be a

simple place holder (see figure 5.56).

Figure 5.56: The outputs subtree

Some interface elements are marked as attached interface elements with a small

TIE icon (see figure 6.192) as they had been automatically attached.

For more information about attaching interface elements to a CTE node go to sub-

section 6.8.7.4 Attach selected interface element to CTE node.

132 TESSY 5.1 Manual

5.2 Quickstart 2: The Classification Tree Editor (CTE)

5.2.2 Working with the CTE

The basic idea of the Classification Tree Method is to provide a systematical approach to

create test case definitions based on the functional specification of the function or system

to be tested. The TESSY included Classification Tree Editor CTE assists you in creating low

redundant and error sensitive test cases.

For more information about working with classes as well as with classifications and

test cases please refer to subsection 6.8.6.4 Creating classifications, classes and

test cases.

After preparing a test in the TIE, well designed test case specifications need to be created.
6.8 CTE:

Designing the test
cases

A test case is formed through the combination of classes from different classifications. For

each test case exactly one class of each classification is considered.

The combined classes must be logical compatible, otherwise the test case is not executable.

You should choose and combine as many test cases as needed to cover all aspects that

should be tested.

Within the CTE tree area it is possible to move the classifications and other elements with

drag and drop: Just left click the element, hold the mouse button and move it to the desired

place. You may also select a group of elements and move them the same way.

The tree layout will be arranged automatically by clicking in the tool bar.

5.2.3 Entering test data

You may use the CTE to create or edit test cases manually. Making those kind of changes is

also possible within the TDE but in both perspectives values are always entered in the Test

Data view. Entering values

It is possible to assign test data using the tree nodes of the classification tree. For each tree

node values to variables can be assigned (see figure 5.57).

TESSY 5.1 Manual 133

5 Tutorial: Practical exercises

Figure 5.57: CTE tree area and Test Data view

Important: To enter the data it might be necessary to enlarge the window or to

change the width of the first column containing the interface elements.

Please note that some of the operations and overviews are only available within the TDE

perspective.

More information about entering test data within the CTE perspective can be found

in subsection 6.8.7.1 Assigning test data to the CTE.

As mentioned above some classifications are automatically attached to interface elements.

This attachments allow TESSY to automatically generated test data based on the names of

the respective classes.

TESSY will generate the test data every time the CTE document is saved. Do so and select

the classes in the tree to examine the generated values.

134 TESSY 5.1 Manual

5.2 Quickstart 2: The Classification Tree Editor (CTE)

Important: Values automatically generated by TESSY can be edited but will be

overwritten when saving the CTE document. Other interface elements can be edited

and will be kept, this is reasonable for example for interface elements which are also

output variables.

Always keep in mind that attaching arbitrary test data to nodes can lead to very

confusing situations. So please be cautious and stick to conventions made by your

team or company or those proposed by Razorcat.

Notice the following habits:

• The name of the selected item will be displayed as column header in the Test Data view.

• When selecting a tree item, you will see the test data entered for this item within the Test

Data view.

• All CTE tree items with any assigned test data will be shown with a yellow square .

• When selecting an interface element within the Test Data view, the respective CTE tree

items with test data assigned for this interface element will be shown with a blue square

.

5.2.4 Creating test cases

The CTE method offers a graphical representation of the recursive partitioning of classifi-

cations and classes in shape of a classification tree. Classifications are drawn as named

rectangles, respective classes are arranged below. To specify the test cases the classifica-

tion tree is used as the head of a combination table. In this Test Table the classes which are

to be combined can be marked.

A test case is formed through the combination of classes from different classifications. For

each test case exactly one class of each classification is considered. In this example all

classes get automatically generated test data.

In this way it is necessary to select one class from every classification in the input subtree to

compose an executable test case, i.e. a test case with a complete set of input values.

TESSY 5.1 Manual 135

5 Tutorial: Practical exercises

Important: Test units without dynamic data types are not generated with a com-

plete set of test data, the pointer’s dynamic object must be initialized and set by the

user. Afterwards TESSY will also generate values in the dynamic object.

More information about classifications, classes and test cases are provided in sub-

section Creating classifications, classes and test cases.

Important: For sake of simplicity the functions of the CTE Test Table within this

quickstart exercise please delete all *min* and *max* elements from the automati-

cally generated tree. You should also modify the output side of the tree.

In general, the automatically generated tree always needs a review and adjustments

from a tester. To demonstrate this procedure we delete classes and add more in this

example.

Figure 5.58: Modify class elements

Þ Double-click on the red marked class in figure 5.58 or press F2 after selecting the figure.

This will allow you to edit the class name.

Þ Enter “yes” and press “Enter” on your keyboard.

Þ Then Right-click on “Return” to open the respective context menu.

Þ Choose “Add Class” to create a new class.

Þ Name it “no” (like explained above).

136 TESSY 5.1 Manual

5.2 Quickstart 2: The Classification Tree Editor (CTE)

Figure 5.59: Deleting elements

Þ Click on one of the red marked elements in figure 5.59.

Þ Press “Delete” on your keyboard.

Þ Do so for all the red marked elements.

Important: The classes names are mapped to values of the attached enumeration

type. In this way it is necessary to use *exactly* the values “yes” and “no”. Comments

after a pair of forward slashes “//” is allowed.

TESSY 5.1 Manual 137

5 Tutorial: Practical exercises

Figure 5.60: Creating test cases in the CTE

Þ Right-click in the Test Table at the bottom of the CTE.

Þ Select “Create Test Case” within the context menu, see figure 5.60, or press Insert on

your keyboard.

Þ Create 9 test cases in this way.

138 TESSY 5.1 Manual

5.2 Quickstart 2: The Classification Tree Editor (CTE)

Figure 5.61: Automatically generated tree with 9 Test Cases

Test cases are defined by setting marks in the Test Table: Setting marks

Þ Select the first test case in the test item list.

Þ Move the mouse over the line of the first test case.

Þ Click on the circles that connect the first test case with the two positive classes.

TESSY 5.1 Manual 139

5 Tutorial: Practical exercises

Figure 5.62: Defining test cases in the combination table of CTE

Important: Marks can also be set with the keyboard:

• Navigate with the cursor keys.

• Set or remove marks with the space key.

Þ Create more marks within the combination table for the other test cases to cover com-

pletely all classes of the classifications “range_start” and “range_length” with your test

cases.

For example the CTE could look like in figure 5.63.

Figure 5.63: Completed table with all test cases for example “is_value_in_range”

6.8.6.4 Creating
classifications,
classes and test
cases

140 TESSY 5.1 Manual

5.2 Quickstart 2: The Classification Tree Editor (CTE)

Important: As you can see there are various possibilities of combining the classes

within the test cases.

In this case it was decided to choose all possible combinations for the classifications.

In real testing you would need to select the most interesting combinations only in

order to get a reasonable number of test cases.

Þ Select the test cases one after another and review the test data resulting from your

mark settings being displayed within the Test Data view (see figure 5.64).

In figure 5.64 the test data for test case 7 is displayed within the Test Data

view. The test data is read-only because it is defined by the marks set within

the combination table.

Þ Click on to save the classification tree.

Figure 5.64: Test data is displayed when selecting a test case in the combination table

Þ Switch to the TDE perspective.

TESSY 5.1 Manual 141

5 Tutorial: Practical exercises

Test data in the

TDE

Figure 5.65: Test data displayed within TDE

You will see the test cases updated with the test data values entered within the CTE perspec-

tive.

Please notice the following habits:

• Test items with data stemming from the CTE perspective are marked with special status

indicators: (test case) and (test step).

• The indicators will appear light gray when there is no data entered, dark gray when there

is some data entered and yellow when the entered data is completed.

• Data stemming from the CTE are read-only. If you want to change them, switch back to

the CTE perspective and do your changes there.

142 TESSY 5.1 Manual

5.3 Quickstart 3: Component test exercise interior_light

5.3 Quickstart 3: Component test exercise interior_light

To understand the handling in this chapter we assume you have worked with TESSY

in unit testing. If not, please proceed with the Quickstart 1: Unit test exercise

is_value_in_range first and come back to this chapter afterwards.

If you have already worked with former versions of TESSY, this chapter may help you

to learn the differences in handling with TESSY 3.x!

Integration testing of functions = component testing

Isolated testing or testing of isolated functions is unit testing.

Testing a component of interacting functions, consisting e.g. of push() and pop() calls

is a very simple example for Integration testing: Functions that do not necessarily

have a calling relation but work together, e.g. operating on common data, with the

objective to achieve a common goal.

At least one of the functions combined in a component must be callable from the out-

side of the component to stimulate the functionality of the component.

Normally several functions are callable from external. We call these functions “compo-

nent functions”. A test for a component is no longer a single function call but a

sequence of calls to the component functions.

The calls to the component functions stimulate the component. Like testing of a sin-

gle function, a test case for a component also comprises of input and output data. A

component may have internal functions that can not be called from the outside of the

component, but only from functions inside the component.

Relevant for the result of a component test is the sequence of the calls from within

the component to (callable) functions in other components. This is with respect to the

number of the calls, the order of the calls, and the parameters passed by the calls to

other components.

Obviously, the functionality of the functions in a component and the interfaces between

them are tested by component testing, at least for the most part. Hence, component

testing can be considered well as integration testing for the functions in the component.

TESSY 5.1 Manual 143

5 Tutorial: Practical exercises

You already know the basic functionality of a unit test. We will now follow a simple source

code example to show how to exercise component testing with TESSY.

Example interior_light

The interior light of a car shall be controlled by two inputs:

The door and the ignition of the car.

The functional specification comprises of three simple requirements:

• If the door is closed, the interior light shall go on.

• The interior light shall go off after 5 seconds at the latest.

• If the ignition is switched on, the interior light shall go off immediately.

Figure 5.67: Example interior_light; ECU = Electronic Control Unit

The specification above is obviously not complete. Especially the initial state of door, ignition,

and light is not given. It is not specified what shall happen e.g. if the ignition is switched off

after it was switched on, etc. But this simple specification is sufficient to demonstrate temporal

component testing with TESSY.

For simplicity, we assume that the initial state shall be

• Door = open

• Ignition = off

• Light = off

144 TESSY 5.1 Manual

5.3 Quickstart 3: Component test exercise interior_light

5.3.1 Creating the test project

Þ Create a test project “interior_light” (if you need any help, consult section Quickstart 1:

Unit test exercise is_value_in_range).

Þ Copy the C-source file “interior_light.c” which is stored under
“C:\Program Files\Razorcat\TESSY_5.x\Examples”.

Þ Paste it into your project root and add it to the module.

Þ Open the module.

The C-source code will now be analyzed, afterwards the Test Project view displays the

functions of the source (see figure 5.68).

Figure 5.68: Test Project view with new project interior_light

Þ In the Properties view switch the Kind of Test to “Component” (see figure 5.69).

Important: By default, “Unit” is selected. This is the point where unit test-

ing and component testing begin to part!

TESSY 5.1 Manual 145

5 Tutorial: Practical exercises

Figure 5.69: Selecting “Component” in the module properties

Now the only test object displayed has the default name “Scenarios” (see figure 5.70).

Figure 5.70: Scenario of a component test

This is different to unit testing with TESSY, where the names of the possible test objects in

interior_light.c (i.e. the functions) would be listed instead.

5.3.2 The heartbeat function

You can open the C-source file with a rightclick onto the module and choosing “Edit Source”

from the context menu. The C++-Perspective will open and the file will be displayed (see

figure 5.71).

146 TESSY 5.1 Manual

5.3 Quickstart 3: Component test exercise interior_light

Figure 5.71: C-source code interior_light

TESSY 5.1 Manual 147

5 Tutorial: Practical exercises

This implementation features a heartbeat function, the tick() function. The implementation

assumes that tick() is called every 10 ms. Based on this assumption, for the timer the value

“500” is calculated.

Heartbeat Function

To be able to test the temporal behaviour of a component in a simulated environment, a sim-

ulated time base needs to be available. This means, a certain function inside the component

is called in known equidistant times (e.g. every 10 ms). The calls to this function represent

the “heartbeat” of the component. They provide a time reference for the testing of the temporal

behaviour of the component.

The heartbeat function is usually called “handler function” or “work task” or simply “tick”.

Figure 5.73: If a heartbeat function exists, timely behavior can be tested.

148 TESSY 5.1 Manual

5.3 Quickstart 3: Component test exercise interior_light

5.3.3 Preparing the test interface

Þ Switch to the TIE perspective.

Figure 5.74: The initial interface

In the section “External Functions” of the interface, the two functions LightOff() and

LightOn() are listed. These two functions are used (called) by the component “Interior

Light”, but these two functions are not implemented in interior_light.c.

The component “Interior Light” expects these two functions to be provided by another

component of the application.

However, we want to test the component “Interior Light” without that other component,

i.e. isolated from the rest of the application. Therefore, we direct TESSY to provide

replacements, i.e. stub functions for these two functions.

TESSY 5.1 Manual 149

5 Tutorial: Practical exercises

To create the stubs:

Þ Rightclick the function “LightOff()” and choose “Create Stub” (see figure 5.75).

Þ Repeat for the function “LightOn()”.

The dots with the blue border will change to blue filled dots .

Figure 5.75: Creating the stubs

In section “Component Functions”, all functions of the component “Interior-Light” are listed.

The passing direction of the variable timer is “Irrelevant”, because it is not used by init(). Since

we are only interested in the variables “sensor_door”, “sensor_ignition”, and “state_door” as

input, we manually set the passing direction for these variables to “In”:

Þ Click in a cell and choose “In” for “sensor_door”, “sensor_ignition”, and “state_door” (see

figure 5.76).

Figure 5.76: The final passing directions of variables used by init()

Þ Save the changes by clicking on .

150 TESSY 5.1 Manual

5.3 Quickstart 3: Component test exercise interior_light

5.3.4 Adding test cases

Þ Add two test cases in the Test Items view.

Þ Switch to the SCE perspective (or doubleclick a test case, in this case the SCE per-

spective will open automatically).

Þ The bracket of the scenarios in the Test Project view will open to indicate that it contains

test cases but no data (see figure 5.77).

Figure 5.77: Test Project view with a component test

You can add a description to the test cases (see figure 5.78):

1. Door closed: Light off after 5 seconds.

2. Door closed and ignition on: Light off immediately.

These are the two scenarios we are going to test.

Figure 5.78: Adding a description to test cases

TESSY 5.1 Manual 151

5 Tutorial: Practical exercises

5.3.5 Editing data

The view Test Data of Scenarios is similar to unit testing:

Þ Go to the view Test Data of Scenarios within the SCE perspective.

Þ Doubleclick the value cells in the INIT column to open the inline editor (see figure 5.79).

Figure 5.79: Inline editor of the view Test Data of ’Scenarios’

Þ Choose the following selections:

sensor_door = open

sensor_ignition = off

state_door = open

Figure 5.80: View Test Data of ’Scenarios’

Þ Use the same data for the second scenario.

Þ Save by clicking on .

152 TESSY 5.1 Manual

5.3 Quickstart 3: Component test exercise interior_light

The view Function Calls displays the two functions LightOn() and LightOff() that the com-

ponent “Interior-Light” supposes in another component. TESSY provides stub functions for

these two functions during component testing.

Figure 5.81: View Function Calls

Please notice that you can rename the test cases: Renaming Test

Cases
Þ Rightclick a test case and choose “Rename” from the context menu.

The new name will be displayed in the center of the SCE perspective (see figure 5.82).

Figure 5.82: The names of the test cases are displayed in tabs of the view Work Task

TESSY 5.1 Manual 153

5 Tutorial: Practical exercises

5.3.6 Configuring the work tasks

As we know, the implementation of the component Interior Light assumes that the function

tick() is called every 10 ms, i.e. the function tick() is the work task or handler task or heartbeat

of the component. To enable TESSY for temporal component testing, Tessy must know about

this, i.e. we must specify tick() as work task for the component manually.

To specify tick() as work task:

Þ Select the tick().

Þ Click on (Set as Work Task) in the tool bar (see figure 5.83).

The icon of the function will change from to .

Figure 5.83: Setting the Work Task

5.3.7 Designing scenarios

5.3.7.1 First scenario

Since we want to test the temporal behavior of the component, we need to establish a time

base:

Þ Within the Scenario view in the center of the SCE perspective click on (Insert Time

Steps).

Þ Click three more times to include all in all 4 time steps.

The scenario consists of 4 calls to the work task, in our case tick(). The calls occur at 0 ms,

10 ms, 20 ms, 30 ms simulated time.

To stimulate the component besides the calls to tick(), you can simply drag and drop a function

to the scenario.

154 TESSY 5.1 Manual

5.3 Quickstart 3: Component test exercise interior_light

Þ Drag the init() from the Component Function view to the Scenario view (see figure 5.84).

Figure 5.84: Dragging the function onto the scenario

Nowwe stimulate the component actually. We drag the component function set_sensor_door()

to 30 ms simulated time:

Þ Drag the component function set_sensor_door() to 30 ms simulated time (see figure

5.85).

Figure 5.85: set_sensor_door() is dragged to 30 ms simulated time

Now you have to specify a value for the parameter of set_sensor_door() in the properties of

set_sensor_door():

Þ Open the Properties view and click in the cell under “value”.

Þ Enter “closed”.

The value will be displayed in the parameter of the time step function (see figure 5.86).

TESSY 5.1 Manual 155

5 Tutorial: Practical exercises

Figure 5.86: The parameter of set_sensor_door() is set

In the scenario above, after the fourth call to tick(), TESSY calls the component function

set_sensor_door() with the parameter value “closed”. This should cause the component to

react by calling LightOn(). We know from the implementation of Interior Light that this call

will happen one tick later, i.e. after TESSY has called tick() a fifth time, at 40 ms simulated

time.

Þ Specify the expected result by dragging the function LightOn() from the Function Calls

tab to 30 ms simulated time (see figure 5.87).

Figure 5.87: Dragging the function

156 TESSY 5.1 Manual

5.3 Quickstart 3: Component test exercise interior_light

The scenario above expects the call to LightOn() to happen at 30 ms simulated time, i.e. prior

to the fifth call to tick(). This is indicated by the time frame “30 - 30 ms”. We know that the call

will occur one tick later, and we want to treat this behavior as correct:

Þ Extend the time frame in the properties to 10 ms (see figure 5.88).

Figure 5.88: Extending the time frame

Notice that the icon of the test object has changed to yellow , indicating that the

scenario is executable (the purple sign indicates a comment or description).

Besides the call to LightOn(), we also expect a call to LightOff(). Since the ignition will not be

operated in this scenario, we expect the call to LightOff() to occur 5 seconds after the call to

set_sensor_door() at the latest:

Þ Drag LightOff() to 30 ms and extend the time frame by 5000 ms (see figure 5.89).

Þ Save the data.

TESSY 5.1 Manual 157

5 Tutorial: Practical exercises

Figure 5.89: Setting the call “LightOff” and extending the time frame

In the scenario above, we have specified that we expect the call to LightOff() after 5

seconds at the latest, i.e. we would take a call to LightOff() after, say, 4 seconds as a

correct result.

If we would want to accept only the occurrence of the call to LightOff() at 5030 ms

of simulated time as correct, we then could use the context menu’s Insert Time Step

At… command to create this point in time and assign the expected call to LightOff() to

5030 ms of simulated time, of course with the property “Time Frame” set to 0 and not

to 5300.

158 TESSY 5.1 Manual

5.3 Quickstart 3: Component test exercise interior_light

5.3.7.2 Second scenario

Alike the first scenario

Þ Insert some time steps into the scenario.

Þ Drag and drop the component function set_sensor_door() to 10 ms simulated time.

Þ Set the value of the parameter to “closed”.

Þ To specify the expected behavior, drag and drop the function LightOn() from the Func-

tion Calls tab to 10 ms simulated time.

Þ Increase the time frame for LightOn() by 10ms.

Þ Drag and drop the function “set_sensor_ignition” to 40 ms simulated time.

Þ Select the 40 ms time step: The Test Data view will show a new column named “40

ms”. Set the value of the variable “sensor_ignition” to “on” and set the other values to be

ignored (see figure 5.90).

Þ Save the data.

The time step will now get a small yellow icon indicating that test data is fully available.

Figure 5.90: Setting values to “ignore”

Þ To specify the expected behavior, drag and drop the function LightOff() from the Func-

tion Calls tab to 40 ms simulated time.

The second scenario is now complete (see figure 5.91).

TESSY 5.1 Manual 159

5 Tutorial: Practical exercises

Figure 5.91: Designing the second scenario

The expected result of this action is the interior light going off immediately, i.e. after

the next call to the work task tick(). This is specified in the scenario by dragging and

dropping the function LightOff() to 40 ms simulated time and by increasing the time

frame by 10 ms.

This is performed very similar as in the first scenario.

5.3.8 Executing the scenarios

To execute the scenatios,

Þ click on in the tool bar of the Test Project view.

160 TESSY 5.1 Manual

5.3 Quickstart 3: Component test exercise interior_light

5.3.9 Evaluating the scenarios

After the scenarios have been executed, the color of the scenario icons changes to green.

This indicates an overall “passed” verdict (see figure 5.92).

Figure 5.92: The scenarios of the component “passed” the test

TESSY 5.1 Manual 161

5 Tutorial: Practical exercises

5.4 Quickstart 4: Exercise C++

The testing of C++ code requires the same setup of the TESSY modules as normal C code.

To understand the overall handling and create a simple classification tree we consider some

aspects from the Quickstart 1: Unit test exercise is_value_in_range.

Important: Please note that for the testing of C++ code the utilized standard li-

braries need to include the methods ”new“ and ”delete“. This is essential as other-

wise TESSY will will not be able to build the test driver successfully.

Follow the steps below to import a C++ project with sample test cases:

Þ In TESSY click on “File” > “Select Project”.

Þ In the “Select Project” dialog click on the icon (Import Project).

Þ Select the TESSY Project File under

“C:\Program Files\Razorcat\TESSY_5.x\Examples\C++”

Þ Click “Open”.

Figure 5.93: Importing a project

TESSY will show an example project within the project list. Such an example project

will be copied completely to a user defined location when being opened. (see figure

5.94).

162 TESSY 5.1 Manual

5.4 Quickstart 4: Exercise C++

Figure 5.94: Cloning the project.

Þ Double-click the C++ example project and choose an appropriate location.

Figure 5.95: Cloning the project.

The project root will be displayed within the bottom line of TESSY.

TESSY 5.1 Manual 163

5 Tutorial: Practical exercises

Þ Click “OK”.

Figure 5.96: The project root is displayed within the bottom line of TESSY.

TESSY needs to restart and will open the project automatically.

After the restart the window “Restore Database” is displayed.

Þ Click “OK”.

164 TESSY 5.1 Manual

5.4 Quickstart 4: Exercise C++

Figure 5.97: Restoring the database

TESSY will now restore the files.

Þ After a few seconds the new project will be displayed within the Test Project view of

TESSY.

TESSY 5.1 Manual 165

5 Tutorial: Practical exercises

Figure 5.98: Test Project view with the C++ project

Please review the test cases defined for some selected test objects. You will find more ex-

planation and comments on the specifics of C++ testing within the application note “Using

C++”.

166 TESSY 5.1 Manual

5.5 Quickstart 5: Test driven development (TDD)

5.5 Quickstart 5: Test driven development (TDD)

The test driven development support in TESSY allows to prepare tests already before any

source code is available. If you have specification of what the individual software functions

should do, you can manually create (synthetic) test objects and their (synthetic) interface

variables. Afterwards you can create test cases and fill them with data as for normal test

objects. Once the first version of the software is available, you need to assign the test objects

to their respective implementation functions and you can start running the tests against the

implementation. To create synthetic test objects for test driven development:

Þ Create a module without assigning a source file. Only modules in this initial state allow

to create synthetic test objects.

Þ Add new test objects by clicking on the icon (New Test Object). Rename the newly

created test objects.

Figure 5.99: Adding synthetic test objects

Each synthetic test object has an initially empty interface. To add variables:

Þ Change to the TIE perspective.

TESSY 5.1 Manual 167

5 Tutorial: Practical exercises

Figure 5.100: Adding synthetic variables

Þ Click on the icon (NewVariable) to create input and output variables. You can create

variables of all basic types to build the necessary interface. Afterwards you can create

test cases.

Þ Change to the CTE perspective.

Figure 5.101: Creating test cases for TDD

Þ Assign values to CTE tree nodes as with normal variables.

Þ Change to the TDE perspective.

168 TESSY 5.1 Manual

5.5 Quickstart 5: Test driven development (TDD)

Figure 5.102: Filling test cases for TDD

Þ Enter all required test data and expected values.

The test cases will get a yellow icon if they are completely filled with test data. You cannot

execute the tests because there is no source file to be tested available yet. But you can create

a test details report showing the specification of all test cases:

Figure 5.103: Test specification report for TDD

TESSY 5.1 Manual 169

5 Tutorial: Practical exercises

When a first version of the source file is available, add this file to your module. Now you can

analyze the module and you will see the functions contained within the source file and the test

objects that you prepared for test driven development. It doesn’t matter if the implemented

test objects have other names, you can assign test objects within the next step.

Figure 5.104: Implementation source file available for TDD

To assign or reuse test objects:

Þ Change to the IDA perspective.

Þ Assign test objects as described within Compare view.

Figure 5.105: Assignment of synthetic test objects to the implemented functions

Þ Commit changes within the Compare view.

170 TESSY 5.1 Manual

5.5 Quickstart 5: Test driven development (TDD)

Important: When assigning synthetic test objects to the real implementation, the

synthetic variables will not appear within the new interface because the purpose of

this assignment is to assign the values of all synthetic variables to their respective

implemented variables.

In the example shown within figure 5.105 you can see that the implementation uses a struct

to hold all parameters whereas the synthetic test object has all values within scalar variables.

Such differences can be resolved using the IDA assignment as it would be done for normal

interface changes.

The test object “calc_add” is now ready for execution, all prepared test cases and data are

available.

Figure 5.106: Readily assigned TDD test cases

TESSY 5.1 Manual 171

6 Reference book: Working with TESSY

This chapter provides detailed information of the test activities possible with TESSY. The

headlines of the sections follow the actions taken during a test and refer to the corresponding

perspectives and views, e.g. “CTE: Designing the test cases”.

The subsections describe the views of each perspective, displaying used icons and status

indicators and giving quickly answers to your questions of “What can I do within this view?”

and “How do I do …?”.

So if you need help at some point, ask “Where am I?”. You should find the answer easily within

this chapter. If you have questions about the workflow, consult chapter 5 Tutorial: Practical

exercises.

Some views are displayed within various perspectives. Because views are context

sensitive, not every operation is possible within every perspective. In this case the

manual will refer to the respective section and perspective, where all operations of

the view are possible.

6.1. Menu Bar Entries: Setting up the basics 177

6.1.1. File menu . 177

6.1.2. Window menu . 178

6.1.3. Static Analysis Settings . 183

6.1.4. Coverage Settings . 184

6.1.5. Metrics Settings . 185

6.1.6. Interface dictionary . 186

6.1.7. Support menu . 188

6.1.8. Help menu . 188

6.2. Overview perspective: Organizing the test 190

6.2.1. Structure of the Overview perspective . 191

172 TESSY 5.1 Manual

6.2.2. Test Cockpit view . 192

6.2.3. Test Project view . 195

6.2.4. Properties view . 246

6.2.5. Requirements Coverage view . 253

6.2.6. Test Items view . 254

6.2.7. Test Results view . 264

6.2.8. Evaluation Macros view . 264

6.2.9. Console view . 265

6.2.10.Suspicious Elements view . 267

6.2.11.Problems view . 267

6.2.12.Variants view . 268

6.2.13.Coverage Reviews view . 273

6.3. C/C++: Editing the C-source 274

6.3.1. Opening the C/C++ perspective . 274

6.3.2. Structure of the C/C++ perspective . 275

6.3.3. Editor view . 276

6.3.4. Project Explorer view . 278

6.3.5. Outline view . 278

6.3.6. Properties view . 279

6.3.7. Console view . 280

6.4. Requirement management 281

6.4.1. Structure of the Requirement Management perspective 282

6.4.2. RQMT Explorer view . 284

6.4.3. Requirements List view . 293

6.4.4. Requirement Editor view . 294

6.4.5. Validation Matrix view / VxV Matrix view . 297

6.4.6. Test Means view . 298

6.4.7. Link Matrix view . 299

6.4.8. Suspicious Elements view . 304

6.4.9. Attached Files view . 309

6.4.10.Attributes view . 310

6.4.11.History view . 313

6.4.12.Differences view / Reviewing changes . 314

6.4.13.Related Elements view . 316

6.4.14.Problems view . 317

6.4.15.Document Preview . 317

6.4.16.Requirements Coverage view . 320

TESSY 5.1 Manual 173

6 Reference book: Working with TESSY

6.5. TEE: Configuring the test environment 325

6.5.1. Starting the TEE perspective . 326

6.5.2. Structure of the TEE . 327

6.5.3. All Environments view . 328

6.5.4. Projects Environments view . 330

6.5.5. Attributes view . 332

6.5.6. Configuration files . 334

6.5.7. Adjusting enabled configurations . 335

6.6. THAI:TESSY Hardware Adapter Interface 339

6.6.1. The THAI Configuration file . 340

6.6.2. Environment Editor (TEE) Settings for THAI functionality 341

6.6.3. Signals within the interface . 343

6.6.4. Entering test data for signals . 344

6.7. TIE: Preparing the test interface 345

6.7.1. Structure of the TIE perspective . 346

6.7.2. Test Project view . 346

6.7.3. Properties view . 346

6.7.4. Interface view . 347

6.7.5. Plot Definitions view . 368

6.8. CTE: Designing the test cases 373

6.8.1. The basic idea . 373

6.8.2. Structure of the CTE perspective . 374

6.8.3. Test Project view . 374

6.8.4. Properties view . 375

6.8.5. Outline view . 375

6.8.6. Classification Tree editor . 375

6.8.7. Test Data view . 396

6.8.8. Dependencies in CTE . 401

6.9. TDE: Entering test data 407

6.9.1. Structure of the TDE perspective . 407

6.9.2. Test Project view . 409

6.9.3. Test Results view . 409

6.9.4. Evaluation Macros view . 409

6.9.5. Test Items view . 409

6.9.6. Properties view . 410

6.9.7. Test Data view . 411

6.9.8. Test Definition view . 435

174 TESSY 5.1 Manual

6.9.9. Call Trace view . 436

6.9.10.Declarations/Definitions view . 437

6.9.11.Prolog/Epilog view . 438

6.9.12.Stub Functions view . 448

6.9.13.Usercode Outline view . 453

6.9.14.Plots view . 455

6.9.15.Plot Definitions view . 456

6.10.Script Editor: Textual editing of test cases 457

6.10.1.Structure of the Script Editor perspective . 458

6.10.2.Script Editor related Icons of the main tool bar 458

6.10.3.Editing test objects, test cases and test steps 459

6.10.4.Script states . 461

6.10.5.The Script Editor Outline view . 461

6.10.6.Synchronization with the internal model . 462

6.10.7.Merging script contents . 462

6.10.8.Importing and exporting script contents . 464

6.10.9.Importing and exporting script contents . 464

6.10.10.Script examples . 464

6.11.CV: Analyzing the coverage 469

6.11.1.Structure of the CV perspective . 470

6.11.2.Instrumentation for coverage measurements 471

6.11.3.Test Project view . 473

6.11.4.Called Functions view/Code view . 474

6.11.5.Flow Chart view . 475

6.11.6.Fault injection . 484

6.11.7.Statement (C0) Coverage view . 485

6.11.8.Branch (C1) Coverage view . 487

6.11.9.Decision Coverage view . 488

6.11.10.MC/DC Coverage view . 488

6.11.11.MCC Coverage view . 490

6.11.12.Call Pair Coverage view . 490

6.11.13.Coverage Reviews view . 491

6.11.14.Coverage Report views . 495

6.12.IDA: Assigning interface data 496

6.12.1.Structure of the IDA perspective . 497

6.12.2.Status indicators . 497

6.12.3.Test Project view . 498

TESSY 5.1 Manual 175

6 Reference book: Working with TESSY

6.12.4.Properties view . 498

6.12.5.Compare view . 498

6.13.SCE: Component testing 503

6.13.1.Creating component tests . 504

6.13.2.Preparing the test interface . 507

6.13.3.Configuring the work tasks . 508

6.13.4.Designing the test cases . 510

6.13.5.Editing scenarios . 511

6.13.6.Executing the scenarios . 516

6.14.Fault injection 517

6.14.1.Managing fault injections in the Coverage Viewer 517

6.14.2.Creating fault injection test cases . 518

6.14.3.Creating and editing fault injections in the Coverage Viewer 520

6.14.4.Fault injections within the report . 522

6.15.Mutation testing 523

6.15.1.Preferences . 524

6.15.2.Test execution settings . 526

6.15.3.Mutation view . 527

6.16.Backup, restore, version control 530

6.16.1.Backup . 530

6.16.2.Restore . 533

6.16.3.Version control . 535

6.17.Command line interface 538

6.17.1.Starting TESSY in headless mode . 538

6.17.2.Invoking “tessycmd.exe” . 539

6.17.3.Usage of “tessycmd.exe” . 540

6.17.4.Commands . 541

6.17.5.Execution and result evaluation . 541

6.17.6.Headless operation . 542

6.17.7.Example: DOS script . 543

176 TESSY 5.1 Manual

6.1 Menu Bar Entries: Setting up the basics

6.1 Menu Bar Entries: Setting up the basics

Figure 6.1: Menu bar of TESSY

The menu bar provides global operations such as project handling commands, editing com-

mands, window settings, TESSY preferences and the help contents.

6.1.1 File menu

File menu entry Setting options

“Select Project” Opens the dialog “Select Project”. If you select another

project, TESSY closes the current project, restarts and opens

the selected project.

“New Project” Opens the dialog “Create Project”. Refer to section 4.1.1

Creating a project database.

“Import Project” Opens the Windows Explorer. Choose a project and click

“Open”.

“Edit Project” Opens the dialog “Project Configuration”. Refer to section

4.1.1 Creating a project database.

continue next page

TESSY 5.1 Manual 177

6 Reference book: Working with TESSY

File menu entry Setting options

“Close Project” Closes the current project. TESSY will restart and show the

dialog “Select Project”.

“Edit Environment” Opens the TEE, the Test Environment Editor. Refer to chapter

6.5 TEE: Configuring the test environment.

“Open File…” Opens the project file.

“Database Backup” Refer to chapter 6.16 Backup, restore, version control.

“Exit” Quits TESSY.

Table 6.1: File menu options

6.1.1.1 Edit menu

Here you will find common actions as “Delete” or “Undo”, “Redo” etc. You can use as well the

context menu. Refer to section 4.3 Using the context menu and shortcuts.

6.1.2 Window menu

Window menu Setting options

“Show Console” Opens the Console view on the lower right of the graphical

user interface.

“Show Problems View” Opens the Problems view on the lower right of the graphical

interface.

“Show View…” Opens a list of all available views within TESSY.

“Show Perspective…” Opens a list of various perspectives available within TESSY

to switch directly to the desired perspective. You can as well

use the graphical user interface to do so. For more

information please refer to section 4.2 Understanding the

graphical user interface.

continue next page

178 TESSY 5.1 Manual

6.1 Menu Bar Entries: Setting up the basics

Window menu Setting options

“Reset Workbench” With a click you reset the positions of all perspectives and

views to the default setting.

“Preferences” Switch to the Preferences menu to be able to adapt basic

functionality to your needs.

Table 6.2: Window menu options

6.1.2.1 Window > Preferences menu

Figure 6.2: Preferences menu of TESSY

TESSY 5.1 Manual 179

6 Reference book: Working with TESSY

Within section “Preferences” of the Window menu you find many options for setting basic
functions to your needs:

Preferences menu Setting options

“Coverage Settings” In this section you can setup an instrumentation for coverage

measurement that will be the default for all of your projects

(see figure 6.4).

You can still set up a different instrumentation for

every test collection, folder, module or test run.

Refer so section 6.2.4 Properties view.

TESSY includes various pre-defined coverage

measurements for common known safety standards. You can

as well

• modify the existing selections (tick a box),

• choose the test type for the selection (unit or

component test),

• define your own (click on “Create”) coverage selections,

• import (click on “Import”) and export coverage

instrumentation settings as XML file.

To define a default instrumentation for your project, select

from the pull-down list on top.

“Dialog Settings” Within this section you can

• set the default directories for imports of test objects,

exports for test objects and modules and for adding

includes and source files,

• decide, which confirmation dialogs will be shown.

continue next page

180 TESSY 5.1 Manual

6.1 Menu Bar Entries: Setting up the basics

Preferences menu Setting options

“Metrics” Within this section you can

• display or hide additional measurements (e.g. the

average and maximum CC measures) and specify

error/warning levels for CC calculation,

• choose to apply the RS and TC/C measure into the test

object result calculation,

• disable the calculation of coverage totals.

(See figure 6.5 for details.)

“Static Analysis” TESSY supports the static analysis tools “Cppcheck” and

“PC-Lint”.

To enable static analysis,

• go to “Path to executable” and select your

cppcheck.exe or lint-nt.exe. On the preference page

you can also specify the options passed to the analysis

tool, and whether the static analysis is to be run in the

environment context of a module (see figure 6.3).

• To perform the static analysis, right-click on a module

and select “Analyze Source” from the context menu.

Any issues that have been found will be printed on the

console and listed in the Problems view.

Please note that if you change the options on the preference

page such that the message output format is different from

the default setting used by TESSY, the Problems view may

not be able to correctly parse and display the output.

“Test Execution

Settings”

Within this section you can choose if selections and settings

should be remembered, e.g. if you tick unter “Remember test

instrumentation settings” the option “Globally for all test

objects” the last used coverage selection will be used, see

section 6.2.3.14 Instrumentation settings.

continue next page

TESSY 5.1 Manual 181

6 Reference book: Working with TESSY

Preferences menu Setting options

“Test Interface Settings” Within this section you can personalize TESSY’s behaviour

within the Interface view, such as

• sorting order,

• hide empty sections,

• and show available types for test objects.

“Test Project Settings” Within this section you can personalize TESSY’s behavior

within the Test Project view, such as

• sorting order,

• showing the Overview perspective when starting,

• and showing the Problems view on error.

“Test Report Options” Within this section you can

• change the output directory for the various TESSY

reports,

• change the filenames,

• change the default Razorcat logo within the reports to

your own company logo (PNG, JPG or GIF files are

possible) (see figure 6.2),

• and choose an output format (PDF, HTML or DOCX).

If you move the mouse over the entry, a tooltip will

give you further information of the options!

Table 6.3: Preferences menu options

182 TESSY 5.1 Manual

6.1 Menu Bar Entries: Setting up the basics

The following preferences will be stored within backup files when saving the whole project database

as described within Backup, restore, version control:

• Coverage settings

• Dialog settings

• Metrics settings

• Test execution settings

• Test report options

6.1.3 Static Analysis Settings

You can configure the static analyzer tools “CppCheck” and “PC lint” to be executed when analyzing

modules.

Figure 6.3: Static Analysis in the Preferences menu

The static analysis settings are used for calling the respective static analyzer tool. You need to enter

the path to the binary and change the command line options to your needs.

TESSY 5.1 Manual 183

6 Reference book: Working with TESSY

6.1.4 Coverage Settings

Figure 6.4: Pre-defined coverage instrumentation settings

For a selection of the most applicable safety standards, there are pre-defined coverage settings avail-

able according to the recommendations given within those standards. You can choose a coverage

setting for the appropriate standard and level as default for all modules of your project. When running

tests with coverage instrumentation, the respective settings will be applied automatically.

You can as well define your own coverage settings if the standard you are using is not available within

the list.

184 TESSY 5.1 Manual

6.1 Menu Bar Entries: Setting up the basics

6.1.5 Metrics Settings

Figure 6.5: Pre-defined coverage metrics settings

You can enable the calculation of the CC average and maximum values and decide to show them

within the Test Project view. The two measures Result Significance (RS) and Test Case To Complexity

Ratio (TC/C) can be activated to be applied for the result calculation of test objects. If you tick the

Apply check box, a failed value of the respective measure will lead to a failed test execution result of

the test object.

TESSY 5.1 Manual 185

6 Reference book: Working with TESSY

The coverage totals are enabled by default in order to provide better progress information when de-

veloping and executing tests. The coverage totals will be propagated up to the test collection so that

you have the total number of branches or conditions on test collection level. As soon as any test

objects have been executed, the reached branches or conditions of those executed test objects will

be propagated upwards but all other test objects with missing tests or coverage data will still be taken

into account.

If you don’t need the metrics measurements or do not want to apply the coverage totals, you can

disable all those metrics to avoid unnecessary calculations.

6.1.6 Interface dictionary

The interface dictionary is used to collect additional information about global variables. It automatically

collects the global variables of all modules of a project. Whenever a module is analyzed the interface

dictionary will be updated with the variables contained within the module interface.

Figure 6.6: Interface dictionary within the Preferences

186 TESSY 5.1 Manual

6.1 Menu Bar Entries: Setting up the basics

Double-click a variable in the interface dictionary to open the edit window:

Figure 6.7: Editing variables in the interface dictionary

You can specify a description, color and a range of valid values for this variable. These information

can later be used for automatic generation and update of classification trees.

With the “Add…” button new variables can be created.

Using the “Verify…” button allows you to check the edited list of variables with the available variables

within all module interfaces of the project. If any variables are not existing in any module interface,

such variables will be decorated with a warning icon.

Figure 6.8: Interface dictionary variable with warning icon

If you delete variables, they will be added again when a module containing those variables is ana-

lyzed.

The interface dictionary can be exported and imported as XML file (e.g. for editing or initial creation)

and it can be saved and restored during the database backup and restore operation.

TESSY 5.1 Manual 187

6 Reference book: Working with TESSY

6.1.7 Support menu

Support menu Setting options

“Create Support

File…”

Creates a support file. Refer to section 7.1 Contacting the TESSY

support.

“Logging…” Opens the “Edit Settings” dialog.

“Start Shell” Starts a bash shell that can be used to try out the command line

execution of TESSY. The PATH variable is already set to the bin

directory of the currently running TESSY installation, so that you

can run tessycmd immediately. Refer to section 6.17 Command

line interface.

“Open Log File” Opens the external problems log 7.2.3 Opening external problem

logs using the Support menu.

“Open Workspace

Problems Log”

Opens an information dialog with a list of problems 7.2.3 Opening

external problem logs using the Support menu.

“Open Problems

Log…”

Opens the Windows file chooser to open a problems log 7.2.3

Opening external problem logs using the Support menu.

“Import Example

Module…”

Imports the TESSY example module is_value_in_range.

“Enable Support

Mode…”

Will provide additional operations in TESSY that are useful during

a support session.

Table 6.4: Support menu options

6.1.8 Help menu

Help menu Setting options

“About TESSY” Shows information i.e. the TESSY version.

“User Manual” Opens the TESSY User Manual.

“Safety Manual” Opens the TESSY Safety Manual.

continue next page

188 TESSY 5.1 Manual

6.1 Menu Bar Entries: Setting up the basics

Help menu Setting options

“Documentation…” Contains various documentation for compiler and targets and

frequently asked questions (PDF files).

“Key Assist…” Opens a list with shortcuts.

Table 6.5: Help menu options

TESSY 5.1 Manual 189

6 Reference book: Working with TESSY

6.2 Overview perspective: Organizing the test

Important: If you have not created a project yet, do so as described in the chapter

“Basic handling” in section 4.1.1 Creating a project database!

Figure 6.9: Overview perspective

The perspective bar might appear with only the symbols. If you wish to see it in full

(like in figure 6.9) please rightclick one of the symbols to open the context menu,

than click > Show Text.

190 TESSY 5.1 Manual

6.2 Overview perspective: Organizing the test

6.2.1 Structure of the Overview perspective

Pane Location
(default)

Function

Test Cockpit

view

upper left Provides an overview of all source files located within

the project root or source root directory of a TESSY

project. Results of executed tests and achieved cover-

age results are summarized on source file level.

Test Project view upper

middle

To organize the project: Create test collections, modules

and test objects; execute the test, create reports and

have a fast overview on your project.

Properties view lower left To edit all properties, e.g. adding sources or including

paths to your modules.

Requirement

Coverage view

lower left To select and link the requirements that you managed

within the Requirement management perspective.

Test Items view upper right To create test cases and test steps manually.

Test Results

view

upper right To view the test results.

Evaluation

Macros view

upper right To view evaluation macro results if the usercode of the

test object contains any.

Console view lower right To display messages of sub processes invoked during

test execution, e.g. compiler calls.

Problems view lower right Provides information about possible errors that appear

e.g. in the process of test executions.

Variants view lower right Supports the variant management in TESSY.

Notes view lower right Lists added notes that can be edited or deleted.

Suspicious

Elements view

lower right To review changes of requirements, modules or test ob-

jects that require updating the linked test cases.

Table 6.6: Structure of the Overview perspective

TESSY 5.1 Manual 191

6 Reference book: Working with TESSY

6.2.2 Test Cockpit view

Test Cockpit

view

Figure 6.10: Test Cockpit View

6.2.2.1 Icons of the view tool bar

Icon Action /
Comment

Shortcut /
Key

Refreshes the view. F5

Inserts a new module. Insert

Analyzes the C-source file(s). Ctrl + L

To edit tasks.

Executes the test. Ctrl + E

Generates various test reports. The test summary report for

the current project will be generated as default.

Ctrl + R

Defines a batch operation.

continue next page

192 TESSY 5.1 Manual

6.2 Overview perspective: Organizing the test

Icon Action /
Comment

Shortcut /
Key

Imports a test summary.

Clears the imported test summary.

Expands all.

Collapses all.

Links with the Test Project view.

Table 6.7: Tool bar icons of the Test Cockpit view

6.2.2.2 View icons

Icon Meaning

Sources files folder, Project root.

Source file of the project being tested by at least one module.

Untested source file of the project (i.e. there is no module that tests this

source file).

Source file with coverage reviews.

Summary test object holding information about the overall test result and

coverage data for test objects collected within a module.

None of the contributing test objects in this summary test object have test

data or are executable.

Some contributing test objects in this summary test object have test data

and are partly executable.

All contributing test objects in this summary test object are executable.

All contributing test objects were executed successfully and provide com-

plete test coverage data. This summary test object is completed.

continue next page

TESSY 5.1 Manual 193

6 Reference book: Working with TESSY

Icon Meaning

Some contributing test objects were not executed and provide incomplete

test coverage data. This summary test object is incomplete.

List of tasks belonging to the project.

Tasks checklist.

Table 6.8: View icons of the Test Cockpit view

6.2.2.3 Status indicators

Indicator Status

Successful completion, either results as expected or 100% coverage.

Percentage of successfully completed results or achieved coverage.

Any missing coverage of summary test objects will become green once

there are coverage reviews covering the remaining unreached code

lines.

Coverage reviews being present for a summary test object will be indi-

cated by a blue decorator.

Coverage indicator (e. g. 60% partial coverage).

The red part of the pie indicates the missing percentage.

Test result is failed.

Table 6.9: Status indicators of the Test Cockpit view

194 TESSY 5.1 Manual

6.2 Overview perspective: Organizing the test

6.2.3 Test Project view

Test Project

view

Figure 6.11: Test Project view within the Overview perspective

6.2.3.1 Icons of the view tool bar

Icon Action /
Comment

Shortcut /
Key

Imports files (type depends on the selection).

Exports files.

Synchronizes a module.

Analyzes the C-source file(s) of the module. Ctrl + L

Executes the test. Ctrl + E

Generates various test reports. The test details report for a

test object will be generated as default.

Ctrl + R

Defines a batch test.

Inserts a new test collection.

Inserts a new folder, optional for organizing your test project. Shift + Ins

continue next page

TESSY 5.1 Manual 195

6 Reference book: Working with TESSY

Icon Action /
Comment

Shortcut /
Key

Inserts a new module. Modules will contain the test objects

available within the C-source files to be tested, i.e. C func-

tions.

Ins

Inserts a new task.

Inserts a new test object. Ctrl + Insert

Hides irrelevant test objects.

Displays irrelevant test objects in gray, without providing any

further functionality.

Table 6.10: Tool bar icons of the Test Project view

6.2.3.2 View icons

Icon Meaning

Test collecion containing folder(s) (optional) and module(s).

Folder containing module(s) (optional).

Module containing the test object(s).

Module containing a comment, a description or a specification.

Variant module that was created with the “Create Variant” option.

Table 6.11: View icons of the Test Project view

196 TESSY 5.1 Manual

6.2 Overview perspective: Organizing the test

6.2.3.3 Status indicators

Indicator Status

Some interface settings need manual inspection (e.g. undetermined

array sizes).

The test object was analyzed but has no test case.

The test object has test cases but no data.

At least one test case has any data.

At least one test case is ready to be executed.

The test object interface has changed.

A reuse operation within IDA is required.

The C-source of the test object has changed.

A new function has been added.

The test object has been removed. You still see the object, but there is

no operation possible.

Only displayed when the test object contained any test cases before the

removal.

The test object is suspicious.

The test execution has been aborted for this test object.

The test object contains a comment, a description or a specification.

The test result of a test run is failed.

This may be either due to a mismatch of actual and expected results or

if the coverage did not achieve the minimum coverage.

Test results and coverage of the test run are both OK.

The coverage did not achieve the required minimum coverage.

The red part of the pie indicates the missing percentage of coverage,

e.g. more red means less achieved coverage.

The coverage achieved the minimum coverage, but the minimum cov-

erage was less than 100.

Table 6.12: Status indicators of the Test Project view

TESSY 5.1 Manual 197

6 Reference book: Working with TESSY

6.2.3.4 Changed behavior of the Test Project view (as of TESSY 5.1)

A new default setting for theTest Project view prevents the coverage results from being applied

to the test results and status icons of test collections, folders, modules and test objects. The

coverage results will still be summarized up to the test collection within the coverage columns

but the test result excludes the achieved coverage.

Figure 6.12: The new Test Project view behavior

This setting can be changed within the preferences to revert to the legacy behavior:

Figure 6.13: Revert the new default settings in the preferences

198 TESSY 5.1 Manual

6.2 Overview perspective: Organizing the test

Also the module analysis will now only discard results shown within the Test Project view. Any

results for unchanged test objects will still be available within the Test Cockpit view, even after

a module analysis.

This setting can also be changed to the legacy behavior within the preferences:

Figure 6.14: Change the default Test Cockpit settings in the preferences

If this setting is not selected, all results will be discarded when analyzing modules (i.e. this

is the legacy behavior, the executable test objects of such modules will be shown in yellow

again). With the default settings applied messages within the Test Cockpit view will provide

information about results being kept:

Figure 6.15: Information provided within the Test Cockpit view

TESSY 5.1 Manual 199

6 Reference book: Working with TESSY

6.2.3.5 Creating tests and reviews

You need at least one test collection to organize your test, and within at least one module andCreating the test

one test object. Folders and further test collections are optional and just have the purpose to

organize your test project.

Important: We recommend to do any changes of the test project structure within

theTest Project view of theOverview perspective. The view layout of this perspective

is optimized for this purpose!

Þ Click on the icon (New Test Collection) on the tool bar of the view.

Þ Enter a name and click “OK”.

Þ Click on (New Folder), enter a name and click “OK”.

Þ Click on (New Module), enter a name and click “OK”.

Modules need to be created for each of the source files that shall be tested

with either a unit or integration test. After the module analysis, the module

lists the testable functions of its source files as test objects.

200 TESSY 5.1 Manual

6.2 Overview perspective: Organizing the test

Tasks

The task element provides means to protocol reviews or external tests and link them to re-

quirements. This allows full verification coverage of requirements that are not testable with a

normal unit or integration test. A task can be created within a test collection or folder.

Þ In the Test project view right-click on a test collection or folder.

Þ Click on “New Task” in the context menu.

Figure 6.16: Editing the Task settings

TESSY 5.1 Manual 201

6 Reference book: Working with TESSY

You can edit the task name, choose the type (review or test) and write down the desired

actions to be performed. Further types of tasks can be defined within the tasks preference

page.

Tasks also have a result that shall be set after the task actions have been completed. Choose

the execution date in order to track the completion of the task actions.

You can also attach files in PDF, ASCII text or image formats as a documentation of the

review process. The contents of those files will be appended to the test details report of a

task element (e.g. scanned check lists or filled PDF forms).

Executed tasks are displayed with their result within the Test Project view.

Figure 6.17: Executed task “Checklist” (Passed) in the Test Project view

When linking tasks to requirements, each task result counts as one test result compared to

the test case results of normal unit testing.

Figure 6.18: Task “Checklist” linked to multiple requirements in Link Matrix

For more information about the handling of the Link Matrix please refer to section 6.4.7.

202 TESSY 5.1 Manual

6.2 Overview perspective: Organizing the test

6.2.3.6 Analyzing modules

Important: To analyze a module it is necessary to select an execution environ-

ment, add at least one C-source file and required include paths for header files and

add defines necessary for analyzation/compilation of the source file(s), see section

6.2.4 Properties view. If you need to learn more about this workflow, have a look at

the Tutorial: Practical exercises.

To analyze a module (the C-source file), Analyzing the

C-source file
Þ in the tool bar click on (Analyze Module) to start the module analysis.

TESSY now analyzes the C-source file, this will take a few seconds.

After successful processing,

Þ click on the white arrow in front of the module: .

TESSY will as well analyze the C-source file by just clicking on the white arrow next

to the module after adding the C-source file.

Function which is defined in the C-source file is displayed as a child of a module within the

Test Project view (see figure 6.19).

Figure 6.19: Function of the C-source displayed as child of the module

In the following you can see an example of a project with multiple functions all listed in the

Test Project view.

TESSY 5.1 Manual 203

6 Reference book: Working with TESSY

Figure 6.20: Multiple functions in the Elevator project

There are several parser options which can all be set in the TEE:

Parser option Description

Enable Create Default

Constructors

If set to true, the TESSY parser creates a default constructor if

it is missing.

Enable Create

Function Stubs

If set to true, external functions that are called are by default

marked to create stub code unless they are listed in attribute

“Function Stub Exclude List”.

Enable Create Method

Stubs

If set to true, undefined called methods are marked to create

stub code unless they are listed in attribute “Method Stub

Exclude List.”

continue next page

204 TESSY 5.1 Manual

6.2 Overview perspective: Organizing the test

Parser option Description

Enable Define

Variables

If set to true, external variables that are used are marked to be

defined unless they are listed in attribute “Variable Exclude List”.

Enable Exceptions If set to true, TESSY enables exceptions for the test object and

generates a try-catch block around it. Also the TIE displays an

artificial global variable called throws exception which can be

set to OUT in order to test an exception thrown be the test

object. By default the attribute is set to true.

Function Stub Exclude

List

The comma separated list of functions is excluded from

automatic stub creation.

Method Stub Exclude

List

The comma separated list of methods is excluded from

automatic stub creation.

Variable Exclude List The comma separated list of variables is excluded from being

automatically defined.

Table 6.13: Parser options and descriptions

General information about editing the environment can be looked up in the section TEE:

Configuring the test environment.

Important: Setting changes of the parser options made in TEE will be effective

when analyzing a module. Some of the options only apply when initially analyzing

modules. In this case it is necessary to reset a module before starting the analysis to

see the effects of the latest changes.

Please note: Test environments making use of other parsers are no longer sup-

ported in TESSY 5.1.

For more information about the parser options and more attributes available within

the environment editorTEE please refer to the application note “Environment Settings

(TEE)” in TESSY (“Help” > “Documentation”).

TESSY 5.1 Manual 205

6 Reference book: Working with TESSY

6.2.3.7 Static code analysis and quality metrics

Calculation of the cyclomatic complexity (McCabe metric, displayed as CC) is a common

measure for complexity control. It measures the complexity of source code on the basis of

the control flow graph and indicates the number of linearly independent paths through the

code.

If decisions within the code have more than one atomic condition (e.g. “if (A && B)”), the

cyclomatic complexity will be incremented by one for each additional atomic condition within

such decisions.Using CC for

complexity

control
Each occurrence of the following will also increase the CC by one:

• if ...

• for ...

• while ...

• do/while ...

• case ...: (only if directly followed by a code block)

• catch ...

• &&

• ||

• ?

An empty function or method has a complexity of one, while all preprocessor directives are

ignored.

The metric increases linearly with the number of binary decisions within a program, however

e.g. calculations are not taken into account. McCabe indicates 10 as the highest acceptable

cyclomatic complexity measure which means that values higher than 10 suggest a software

review.

206 TESSY 5.1 Manual

6.2 Overview perspective: Organizing the test

Figure 6.21: Static code analysis in the Test Project view

TESSY determines the cyclomatic complexity value for each test object on module, folder

and test collection level using the sum of all values (displayed as CC - Total Cyclomatic

Complexity). Optionally you can also display the average value (CC Avg) or the maximum

value (CC Max).

Within the preferences it is possible to set two threshold values as limits which will be high-

lighted in yellow (warning) or red (error). Values below the warning limit will be marked in

green.

Also important is the relation between the number of test cases and the complexity. For this

purpose TESSY provides the test case to complexity (TC/C) ratio. This measure indicates if

there are enough test cases available to have at least one test case for each linearly inde-

pendent path. As a result you will most probably reach 100% branch coverage for a TC/C

ratio greater than 1.

• A value smaller than 1 indicates that not enough test cases have been created to pass

through all linearly independent paths. (The value appears highlighted in red.)

• A value greater or equal to 1 indicates that at least a minimum number of test cases

has been defined. (The value appears highlighted in green.)

TESSY 5.1 Manual 207

6 Reference book: Working with TESSY

Important: The TC/C ratio is only a hint for the necessary number of test cases to

achieve 100% branch coverage. Depending on the code to be tested there may be

less or even much more test cases necessary to do a full functional test. Also this

measure does not take test steps into account because test steps are only seen as

helper steps to prepare a test object for the actual test.

The result significance (RS) reveals weak test cases. This measure is available after the test

execution and it verifies that each test case applies at least one of the following checks:

• Has some expected results other than *none*.

• Checks the call trace.

• Uses evaluation macros.

If none of the above checks are made, the RS measure of the respective test case will be

marked as failed, otherwise it will be marked as passed (after running a test).

6.2.3.8 Testing effort estimation and tracking

TESSY provides a testing effort estimation based on a customizable formula. This formula

can be edited within themetrics preference page as well as warning and error level thresholds.

The actual time spent for testing a test object can be tracked within a separate column of the

Test Project view.

Both testing effort columns need to be enabled within the metrics preference page to become

visible within the Test Project view (see figure 6.22).

The metrics preferences can be found in theWindow menu of the TESSY Menu Bar.

More information about the basic settings of TESSY is provided in section 6.1 Menu

Bar Entries: Setting up the basics.

208 TESSY 5.1 Manual

6.2 Overview perspective: Organizing the test

Figure 6.22: Select “Estimated Time” and “Actual Time” in the Preferences

TESSY 5.1 Manual 209

6 Reference book: Working with TESSY

The time estimation is an important topic for project management. In order to perform a

realistic time and cost estimation for testing, the following basic conditions should be consid-

ered:

• Processes and organization of the company

• Experience of the test team

• Desired focus/level/depth of testing

• Maturity of the specification and project documentation

• Number of functions to test

• Number of test iterations (for regression testing)

The default formula prepared in TESSY is only a proposal and should therefore be reviewed

and adapted for each project. The formula for the estimated time can be edited according

to your needs. There are several predefined tokens available that represent values of the

available metrics provided by TESSY.

The table below lists all available tokens:

Token Metric value

$(COMPLEXITY) Cyclomatic Complexity Total

$(C1_TOTAL) Branch Coverage Total

$(DC_TOTAL) Decision Coverage Total

$(MCC_TOTAL) Multiple Condition Coverage Total

$(MCDC_TOTAL) Modified Condition/Decision Coverage Total

$(C0_TOTAL) Statement Coverage Total

$(STATEMENTS) Statement Count

$(CALLS) Call Count

$(MAX_DEPTH) Maximum Depth

Table 6.14: Predefined tokens of the available metrics

If the testing effort columns are enabled within the preferences, theTest Project view will show

the calculated estimation time for each test object after analysis of the module. Whenever

the module will be analyzed again, the estimated time will be updated based on the defined

formula.

210 TESSY 5.1 Manual

6.2 Overview perspective: Organizing the test

The actual time can be edited within the “AT” column for each test object using the inline editor.

Values entered are interpreted as minutes but you can also explicitly specify the unit, e.g. 30m

for thirty minutes or 1h for one hour. Also combined values are possible, e.g. 1h20m.

Figure 6.23: Editing the actual time within the AT

Both testing effort values are cumulated for modules, folders and test collections. The time

being displayed will be rounded to avoid too long values exceeding the column width. All

testing effort values will be listed within the overview report as part of the metrics table.

6.2.3.9 Creating variant modules

Module testing of software variants often require very similar tests that only differ in small

parts. Therefore the comfortable reuse and adaption of existing tests reduces the testing

effort for each variant of the software.

TESSY provides a variant management for test modules so that basic tests within a base

test module can be inherited, altered or removed and additional tests can be added by sub

modules covering the test of each software variant.

A base module serves as parent for all variant sub modules. It contains the information that

will be shared with all variants. Any module can be used as base module (i.e. can be the

parent of sub modules) if the parent module has changed.

TESSY 5.1 Manual 211

6 Reference book: Working with TESSY

If you have i.e. created a module with some test cases, you can create a variant:

Þ Create a new folder i.e. with the name “Variant 1”.

Þ Right-click on the folder and select “New Variant Modules” from the context menu (see

figure 6.24).

Figure 6.24: Create Variant Modules

212 TESSY 5.1 Manual

6.2 Overview perspective: Organizing the test

Þ Choose the parent module and click on “OK” (see figure 6.25).

Þ The variant will be displayed within the Test Project view with the icon .

Figure 6.25: Selecting the parent module of the variant

Figure 6.26: Test Project view with a module and a variant module

TESSY 5.1 Manual 213

6 Reference book: Working with TESSY

If the parent module has changed, TESSY will mark the children with an exclamation mark.

The mouse over states, that the module needs to be synchronized with its parent (see figure

6.27).

Figure 6.27: The variant module needs to be synchronized with the parent

To synchronize the module with the parent:

Þ Right-click the module and select “Synchronize Module” from the context menu.

214 TESSY 5.1 Manual

6.2 Overview perspective: Organizing the test

Figure 6.28: Synchronizing a module with the parent

The Synchronize Module dialog is displayed. The parent and all child modules will be

shown and can be synchronized in one step.

TESSY 5.1 Manual 215

6 Reference book: Working with TESSY

Figure 6.29: Synchronize Module dialog

For the first synchronization or if a modules interface has changed you will be asked if you

wish to continue:

Figure 6.30: Synchronizing Modules dialog

If you choose “Don’t show this dialog again” invoking the “Synchronize Module” operation

again (e.g. after changes to the parent module), the last used assignments will be applied

without showing the “Synchronize Module” dialog.

216 TESSY 5.1 Manual

6.2 Overview perspective: Organizing the test

The following indicators display the status of the inherited test cases and test steps within the
Test Items view:

Indicator Status / Meaning

The small triangle indicates that the test case or test step is inherited.

The filled triangle indicates that the inherited data of the test case and

test step was overwritten.

The inherited test case or test step was deleted.

The test case or test step was added for this variant test object.

Table 6.15: Status indicators of inherited test cases or test steps

Important: Deleted test cases/steps are only faded out within the child module.

They can be made available again using “Restore Deleted” from the context menu.

Figure 6.31: Test cases and test steps that were inherited of a variant module

TESSY 5.1 Manual 217

6 Reference book: Working with TESSY

6.2.3.10 Notes

In addition to specifications, descriptions and comments added or modified in the Properties

view Notes can be added using the pull down menu of the respective test module, test object

or test case.

Later added Notes to already executed tests will appear in the Test Details Report and in the

Test Overview Report after generating new reports.

Figure 6.32: Add notes via content menu

218 TESSY 5.1 Manual

6.2 Overview perspective: Organizing the test

Added Notes will appear in the Notes view on the lower right of the Overview perspective

and can be edited or deleted there.

Figure 6.33: The Notes view in the Overview perspective

Right-click the respective note to open the pull down menu and choose the wanted action.

You can also choose to create a Notes Report.

Figure 6.34: Editing notes in the Notes view

Notes will appear in the Test Details Report as well as in the Test Overview Report

without any test execution. Notes will not appear in Planning Coverage Reports and

Execution Coverage Reports.

TESSY 5.1 Manual 219

6 Reference book: Working with TESSY

6.2.3.11 Executing tests

After entering test data for a particular test object you are ready to execute the test. During

this process, TESSY will perform the following steps:

• Generate the test driver based on the interface information and user code provided.

• Link the test driver to the test object to create an executable file.

• Run the test with the selected coverage instrumentation.

Generating the test driver

The test driver is necessary to call the function under test and will be generated au-

tomatically. Test driver and the function under test form a complete (embedded) test

application, including the startup code for it, and will use an appropriate compiler for

the particular embedded microcontroller architecture. If the function under test uses

external variables that are not defined, the test driver generated by TESSY can define

those variables.

Once the test driver has been compiled, it can be run as often as required. You can

select a subset of your test cases and run the test again by just selecting the run op-

tion. Changes to test data and expected results might require building a new test driver.

TESSY will check this automatically and generate a new driver.

Stub functions

If the function under test itself calls other functions (subroutines), TESSY can provide

replacement functions (stubs) for the missing subroutines with the test driver. TESSY

features two types of stub functions:

• Stub functions for which you may provide the C source code for the bodies of

the stub functions.

• Stub functions for which TESSY is able to check if the expected value for a pa-

rameter is passed into the stub function and for which TESSY is able to provide

any value specified by the user as return value of the stub function.

To execute a test:Executing the

test
Þ Click on the arrow next to the icon Start Test Execution in the tool bar of the Test

Project view.

220 TESSY 5.1 Manual

6.2 Overview perspective: Organizing the test

Þ Click on “Edit Test Execution Settings”.

A progress dialog will be opened (see figure 6.35).

Þ Choose the desired options and click “Execute”.

A progress dialog will be shown while TESSY generates, compiles and links the test

driver and runs the test. This will take a few seconds.

Meaning of the Test Execution Settings:

Action Meaning

“Force Check Interface” An analysis of the interface is forced.

“Force Generate Driver” Usually TESSY recognizes if the driver has to be

generated. In this case it can be forced.

With “Run” (checked) The test will be executed.

Without “Run” (unchecked) Only the test driver will be generated.

“Abort On Missing Stub

Code”

Building the test driver application will be aborted with

an error if there are non-void stub functions without any

code provided to return a value. You can uncheck this

action to ignore this error if you are sure that the return

values of your stub functions are not used. (For more

information please refer to Defining stubs for functions.)

Table 6.16: Test Execution Settings - Actions

Option Meaning

“Execute test cases

separately”

The download and execution process of the test driver

will be started separately for each test case. This

provides an initial state of memory (and variables) for

each test case and is useful if the test cases shall be

executed independently. The disadvantage of this

approach is an increased execution time. (Due to

start/stop of debugger and download of test driver.) It is

recommended to set this option for dedicated test

objects only.

Table 6.17: Test Execution Settings - Options

TESSY 5.1 Manual 221

6 Reference book: Working with TESSY

Figure 6.35: Test Execution Settings

222 TESSY 5.1 Manual

6.2 Overview perspective: Organizing the test

6.2.3.12 Additional execution types

Besides the normal test execution, additional test execution types can be selected when

running tests. The purpose of these executions is an automated quality analysis of tests and

the test driver application itself.

The execution options can be selected within the test execution dialog.

Figure 6.36: Additional Execution Types in the Test Execution Settings

TESSY 5.1 Manual 223

6 Reference book: Working with TESSY

The following options are available:

• “Run without instrumentation” builds the test driver application without any instrumen-

tation of the original source code.

Not only coverage instrumentation will be omitted but also instrumentation for call trace,

static local variables or fault injection. Because e.g. the call trace cannot be evaluated

without the instrumentation, there will be no evaluation of the call trace for the test run

with this option set. Also fault injection test cases will be skipped. It may happen that

e.g. for test objects that only have fault injection test cases no test will be executed at

all.

The results of all executable test cases will be checked if they yield the same results as

the normal test execution.

• “Run with test data pattern” executes the test object twice.

It initializes all variables with passing direction OUT with the pattern given within at-

tribute “Test Data Pattern” for the first run and with the alternate pattern given within

attribute “Test Data Alternate Pattern” for the second run.

Figure 6.37: Test Data Alternate Pattern and Test Data Pattern in the Properties view

Both test executions must yield the same result as the normal test execution.

• “Run mutation test” executes a mutation analysis on the given test cases as described

within section 6.15 Mutation testing.

6.2.3.13 Test result handling

The prerequisite for all additional execution types is the successful completion of the normal

test execution. All tests must yield passed results to be able run those execution types,

because the passed result is the reference against which the additional execution types are

checked.

224 TESSY 5.1 Manual

6.2 Overview perspective: Organizing the test

Important: It may happen that existing successfully executed test cases are run

against updated source code within a batch test. If such a batch test will be run with

additional execution types selected, the test execution of the additional execution

types will be skipped if the normal test execution ends with failed test results.

Within the TESSY GUI you will always see the following results after running tests with addi-

tional execution types:

• The results of the normal test execution if there were any failed results. (Additional

execution types will have been skipped in this case.)

• The results of the normal test execution if all test runs were successful. (Normal test

runs, without instrumentation and with test data patterns.)

• The results of the last failed test run without instrumentation or with test data pattern,

which ever occurred first. This allows to examine the results of the respective execution

type in order to find the reason for the failure. Also debugging any failed execution type

is possible.

The Test Items view will display which additional execution type caused the failure with a

tooltip on the different results of each test item.

Figure 6.38: Test Items view showing additional execution type failure

TESSY 5.1 Manual 225

6 Reference book: Working with TESSY

Also the TDE will display the actual results of the last failed additional execution type, e.g.

the output variable still has the value of the test data pattern used for initialization in the case

below:

Figure 6.39: Additional execution type failure displayed in the TDE

6.2.3.14 Instrumentation settings

Within the Test Execution Settings dialog you can select the various possible coverage in-

strumentation for this test run (see figure 6.35):

Þ Select from the pull-down menu if the coverage shall be used for the test object or the

test object and the called functions.

Þ Untick the box “Use preselected Coverage”.

Þ Select the coverage instrumentation (more than one possible).

The coverage instrumentation is now used for this test run, even if you have selected a

different coverage instrumentation as default for your project (see section 6.1.2.1 Win-

dow > Preferences menu) or for the module or test object within the Properties view.

226 TESSY 5.1 Manual

6.2 Overview perspective: Organizing the test

“Use preselected Coverage”

If you tick the box “Use preselected Coverage”, coverage selection will be applied ac-

cording to the following rules:

• If a coverage selection is set in the Properties view, that selection will be used.

• If no coverage selection is set in the Properties view, but in the Test Execution

Settings of the Window > Preferences menu the option “Remember instrumen-

tation settings” is set, the last used selection will be used.

• If no coverage selection is set and the option “Remember instrumentation set-

tings” is not set, no instrumentation will be used.

For more information about the coverage measurements refer to the application note

“Coverage Measurement” in TESSY (“Help” > “Documentation”).

TESSY 5.1 Manual 227

6 Reference book: Working with TESSY

6.2.3.15 Debugging with additional execution types

The debugging option within the test execution dialog also reflects the additional execution

types. By default, the last failed execution type is selected for debugging. The respective

test driver application is still available in this case so that the error can immediately be de-

bugged:

Figure 6.40: Debugging option in the Test Execution Settings

228 TESSY 5.1 Manual

6.2 Overview perspective: Organizing the test

It is also possible to select the other execution types or the normal test execution. This

requires the respective test driver application to be built before debugging:

Figure 6.41: Selecting execution types

Important: After debugging any additional execution type, there will be no test

result for the respective test object. It requires another normal test execution (e.g.

without breakpoint) to see a test result again.

When debugging a test object with normal execution, there will be a test result available

afterwards as without debugging. This is useful e.g. for manually executed tests that require

external hardware setup during the test execution. Such tests can be executed in debug

mode and they will yield a test result at the end.

6.2.3.16 Viewing test results

After a test run, the Test Project view gives an overview about the coverage, if selected: Viewing test

results

Figure 6.42: Coverage displayed within the Test Project view

Þ The actual results will be compared with the expected values according to the evaluation

mode. The result will be either failed or passed.

Þ The last step of test execution is the generation of an XML result file. This file contains

all test data and the actual results. It will be used for reporting.

TESSY 5.1 Manual 229

6 Reference book: Working with TESSY

The results of every coverage measurement can be reviewed in the CV (CoverageViewer) as

soon as the test was carried out. For details refer to section 6.11 CV:Analyzing the coverage.
See 6.11 CV:

Analyzing the
coverage

Please notice the following habits:

• A green tick will indicate that all actual values comply with the expected values with respect

to the evaluation modes and the coverage reached at least the minimum coverage.

• A red cross will indicate that either some actual values yield failed results or the coverage

did not reach the minimum coverage.

• If the interface has changed, the test object will indicate changes with test readiness

states (see Status indicators).

Important: The results of the coverage measurement are also part of the test

result for a test object, e.g. if all outputs yield the expected result but the coverage

was less than the minimum coverage, the test result will be failed.

Warning: Using the option “Reset Module” from the context menu will delete the

module with all test results!

230 TESSY 5.1 Manual

6.2 Overview perspective: Organizing the test

6.2.3.17 Hiding irrelevant test objects

In the Test Project view test objects that are not relevant for the project can be hidden by

setting a test object filter:

Þ To modify an existing test object filter click on the arrow next to the button and select

“Select Test Object Filter”.

Figure 6.43: Click on “Select Test Object Filter...”

Þ The Filter Configuration dialog will open (see figure 6.44).

Figure 6.44: Filter Configuration Dialog

Þ Select the test objects you wish to hide in the dialog that is shown.

Þ Once a filter has been set, you can toggle it by clicking on to hide filtered test objects

or show the filtered test objects in gray color by clicking on .

TESSY 5.1 Manual 231

6 Reference book: Working with TESSY

Important: The filter can only be applied to test objects without any test cases.

Accordingly the Filter will automatically be removed for test objects that have at least

one test case.

Figure 6.45: A filter has been set but is currently disabled (filtered test objects appear
faded).

Figure 6.46: The Filter is enabled, the affected test objects are hidden

Important: The filter setting will be saved for each filtered test object within the

test database. When saving and restoring modules asTMB files, these filter settings

will also be persisted and restored.

232 TESSY 5.1 Manual

6.2 Overview perspective: Organizing the test

6.2.3.18 Search filter function

The search filter helps to find and select elements by their name.

Figure 6.47: Search filter function of the Test Project view

Typing search terms into the search field will result in an updated Test Project view.

After a short delay only such matching elements and their ancestors and descendants are

displayed. Elements will automatically be expanded to appear visible with the exception of

modules that need to be analyzed.

Figure 6.48: Searching for “foo”

TESSY 5.1 Manual 233

6 Reference book: Working with TESSY

6.2.3.19 Creating reports

Important: All reports are generated as PDF files by default. To be able to open

TESSY report files and enable the generation of test reports you need to install a

third party PDF viewer like Adobe Reader 7.0 or higher, Sumatra PDF, Foxit etc..

Other available report formats are HTML and Word. Because of potential layout

issues the usage of those formats is discouraged. Also task attachments e.g. will not

appear in HTML.Therefore HTML as well as Word are provided as complementary

helper formats only and without further support.

You can also create pure XML reports for further processing with your own tools.

The following reports are available in TESSY:

Test Details Report

Can be created for individual test objects or

tasks. Reports for test objects contain

metrics, coverage and execution results,

linked requirements, information about the

test cases, their properties, values and

results. Task reports contain the task

properties, linked requirements and the task

result.

The Test Details Report is based on the XML

result file which is created after every test run

and stored within the latest test run.

A test report can be generated as soon as

TESSY has finished running a test.

Test Overview Report

Contains information about the test objects

and the test case results in tabular and

graphical form (pie chart).

The Test Overview Report summarizes the

results of a selected set of test objects. The

report can be generated based on already

executed test objects or right after the

execution of the selected test objects.

continue next page

234 TESSY 5.1 Manual

6.2 Overview perspective: Organizing the test

Planning Coverage Report Contains information about the requirements

linked to test cases and the planned

validation.

Planning coverage summarizes the achieved

coverage of requirements by test cases.

Each link of a test case or task to a

requirement will be counted. This report

provides information about the planning

progress of the test project, since it will show

all requirements that have not yet been

planned to be tested by at least one test case

or task.

Execution Coverage Report Contains information about the validation of

requirements after test run.

Execution coverage summarizes the

achieved coverage of requirements based on

executed tests. The results of test runs (i.e.

the result of each test case) will be

propagated to the list of requirements or

tasks, if any link was set. This report

provides an overview about the result status

of the test project since it will show all

requirements for which the linked test cases

are failed for any reason.

Table 6.18: Reports available within TESSY

All reports are created as PDF documents based on XML data files. These XML data

files can also be used for generating reports or further processing if desired.

To create a report within TESSY: Creating reports

Þ Click in the Test Project view (i.e. within the Overview perspective) on the arrow next to

the Generate Report icon .

Þ Select the report you wish to create (see figure 6.49).

TESSY creates the report within the new folder. This will take a few seconds.

When finished, TESSY will open the file automatically.

TESSY 5.1 Manual 235

6 Reference book: Working with TESSY

Important: The first time you create a report, the “Edit Settings” dialog will be

opened automatically. These settings are memorized and used for the following

reports.

Figure 6.49: Creating a report

Comments added or modified in the Properties view will only appear in the Test De-

tails Report after the test was executed. Notes added to test modules, test objects

and test cases via content menu or modified in the Notes view on the lower right

of the Overview perspective will appear in the Test Details Report as well as in the

Test Overview Report without any test execution. (Test cases can be found in the

Test Items view of the Overview Perspective.) Generally comments will not appear

in the Test Overview Report, also comments and notes will not appear in Planning

Coverage Reports and Execution Coverage Reports.

To understand the usage of notes within TESSY see section 6.2.3.10 Notes.

236 TESSY 5.1 Manual

6.2 Overview perspective: Organizing the test

To change settings: Change settings

of a report
Þ Click on the arrow next to the Generate Report icon .

Þ Select “Edit [report] Settings…” .

The settings dialog for the selected report will be opened.

You can as well change basic settings, e.g. output directories, filenames

and the logo on the reports. Refer to section 6.1.2.1 Window > Preferences

menu.

The Test Details Report Settings dialog:

Figure 6.50: Test Details Report Settings dialog with default and optional settings

TESSY 5.1 Manual 237

6 Reference book: Working with TESSY

The Test Overview Report Settings dialog:

Figure 6.51: Test Overview Settings dialog with default and optional settings

Important: The option “Merge Details Reports Into One Document” is of special

significance as all the other report options simply change the outline of the Test

Overview Report or add or hide certain contents.

Merging the reports is only possible for PDF format and when both the Test

Overview Report and the Test Details Reports are generated within the same batch

operation. Therefore this option will be hidden when it is not applicable.

238 TESSY 5.1 Manual

6.2 Overview perspective: Organizing the test

The Planning Coverage Report Settings dialog:

Figure 6.52: Planning Coverage Settings dialog with default and optional settings

TESSY 5.1 Manual 239

6 Reference book: Working with TESSY

The Execution Coverage Report Settings dialog:

Figure 6.53: Execution Coverage Settings dialog with default and optional settings

240 TESSY 5.1 Manual

6.2 Overview perspective: Organizing the test

To clear a report output directory: Clear Report

Output directory
Þ Within theWindows Explorer go to the report output directory. The directory is displayed

within the Test Project view under “Edit [...] Report Settings” .

Þ Make sure the reports or the directory is not needed anymore!

Þ Delete the reports or the directory.

6.2.3.20 Batch test operations

TESSY provides a batch test feature with various operations for test execution and reporting. Batch Test

You can define which operations shall be performed and which settings shall be used. This

setup can be saved into batch script (TBS) files for test automation using the command line

interface of TESSY (see chapter 6.17 Command line interface).

Open the batch operation settings:

Þ In the Test Project view right-click a project, a module or a test object.

Þ Select “Define Batch Operation…” from the context menu (see figure 6.54).

The window “Define Batch Operation” will be opened.

Figure 6.54: Context menu “Define Batch Operation”

TESSY 5.1 Manual 241

6 Reference book: Working with TESSY

Figure 6.55: Defining the batch operation

To select the test objects for the batch test:

Þ Under “Test Objects” choose the project or modules or test objects for the batch test.

Click “Select All” to select all at once (see figure 6.56).

Figure 6.56: Selecting all text objects

242 TESSY 5.1 Manual

6.2 Overview perspective: Organizing the test

The right side of the window is context sensitive:

Þ Switch to the setting by either marking the operation on the left side or use the tabs on

the upper right side (see figure 6.57). The optional settings for this operation will then

be shown on the right side of the window.

Figure 6.57: Editing the settings of each batch operation

You can create a TBS file for command line execution by saving the batch test settings:

Þ In the batch operation settings window click on (Save batch file as…).

Þ Choose the type of the file and click “Save” (see figure 6.58).

TESSY 5.1 Manual 243

6 Reference book: Working with TESSY

Figure 6.58: Saving the settings of a batch operation as TBS file

6.2.3.21 Importing and exporting

The Test Project view provides the import and export of test data and module backup files

(*.TMB):

Þ Select a folder, module or test object.

Þ In the tool bar click on to import or to export the data.

The kind of import/export depends on the selection:

Selection Type of file

Folder Import: *.TMB files

Module Export: *.TMB file

Test object Import and export: test data

Table 6.19: Import/export selections

244 TESSY 5.1 Manual

6.2 Overview perspective: Organizing the test

When importing test data for individual test objects there are following options (see figure

6.59):

• “Update passing directions”: If you tick the box, the passing directions of all interface

variables will be set according to the passing directions specified within the import file.

All other interface variables will be set to IRRELEVANT.The test object will be ready to

execute when using this option because all variable with passing directions IN, OUT or

INOUT will be filled with values.

• “Overwrite/append test cases”: Either delete existing test cases before importing or

append any imported test cases at the end of the test case list.

Figure 6.59: Import settings of data import

When exporting data there are following options (see figure 6.60):

• The conversion of the export settings is only applicable, if ASAP conversion is enabled!

Please refer to table “General tab of Properties view” in section General tab.

• Input/Expected versus Input/Actual: Either export the expected or the actual result val-

ues. The latter is only available if the test has been executed and actual results are

present.

TESSY 5.1 Manual 245

6 Reference book: Working with TESSY

Figure 6.60: Export settings of data export

6.2.4 Properties view

Properties view

Figure 6.61: Properties view

246 TESSY 5.1 Manual

6.2 Overview perspective: Organizing the test

The Properties view is divided into several tabs on the left and provides various settings which

are explained in the following:

6.2.4.1 General tab

The General tab (see figure 6.61) is used to determine the test environment. Following op-
tions are available:

Option Function

Test

Directory

The path has been specified during database creation and is not

adjustable here.

Name Name of the element, e.g. test collection or module.

Environment Specifies your target compiler (debugger/emulator/simulator)

combination to be used for test execution. To enable the test

environment see chapter 6.5 TEE: Configuring the test environment.

The GNU toolset is already available by default.

Kind of Test Unit: Enables the unit test of TESSY.

Component: Enables the component test of TESSY.

Features “Enable ASAP”: TESSY provides a close integration to the ASAP

standard, allowing the usage of ASAP conversion rules for physical to

integer conversion of test data. If ASAP is ticked, you will find additional

attributes within the Attributes tab in which you have to specify your

ASAP file.

For more information refer to our application notes in the

Help menu in the menu bar (“Help” > “Documentation” >

“Using ASAP Information”).

Table 6.20: General tab of the Properties view

TESSY 5.1 Manual 247

6 Reference book: Working with TESSY

6.2.4.2 Sources tab

Figure 6.62: The Compiler pane in the Sources tab of the Properties view

In the upper pane of the Sources tab the source files to be tested are added. All exportedAdding the

C-source file functions will be displayed if the module is opened. Some additional compiler options can be

specified on module level by selecting the module entry, other options can be specified for

each source file in the list.

To add a C-source file:

Þ Click on (Add Source).

Þ Select your C-source file.

Þ Click “Open”. The C-source file will be added.

To remove a C-source file:

Þ Select a source file and “Remove File” from the context menu.

To replace a C-source file:

Þ Select a source file and “Replace File” from the context menu.

Þ From the next dialog, select another source file.

248 TESSY 5.1 Manual

6.2 Overview perspective: Organizing the test

The lower Compiler pane of the Sources tab displays information about the item selected

from the upper Sources pane. Some of the displayed options (e.g. Includes) in the lower

Compiler pane can be specified in the Test Environment Editor and will be inherited from

there.

Module options apply to all source files unless otherwise specified on file level. File

options apply to one selected source file and will overwrite options that are specified

on module level.

What kind of information is visible depends which tab is selected:

Tab Optional function within the Compiler pane

Includes Add an include path of the headers which are included within the

source file.

Defines Define a macro for the preprocessor:

Þ Click on and enter the name of the define without the normally

used option of your target compiler, e.g. -D. TESSY will use the

appropriate option automatically.

Macros have to be separated by a comma or semicolon.

Options Specify additional directives for your target compiler for your needs.

Note that macros for the preprocessor and include paths have to be

specified within the Defines tab respectively within the Includes tab.

All compiler options added here will be used for the compilation of the

source file when building the test driver application.

continue next page

TESSY 5.1 Manual 249

6 Reference book: Working with TESSY

Tab Optional function within the Compiler pane

Settings Depending on the selected item in the Sources pane the following

features can be enabled (box is checked) or disabled (box is

unchecked) in the Compiler pane:

• Static Functions: When enabled, static functions can be tested

and are added in the test object list of the module. The source

code will be instrumented.

• Inline Functions: When enabled, Inline Functions can be tested

and are added in the test object list of the module.

• Static Local Variables: When enabled, access to static local

variables may be used as normal input or output variables within

TESSY. The source code will be instrumented.

• Hide Functions: When enabled, all functions of the selected

source file are removed in the test object list of the module. This

option is useful for additional C-source files needed for testing

(e.g. implementation of stub functions for called functions), since

they are not relevant for testing and reporting.

• Enable User Includes: When enabled, all included header files of

the source file(s) are included in the user code.

Table 6.21: Optional functions of the Sources tab of the Properties view

Figure 6.63: The Setting tab of the Properties view with module selected

250 TESSY 5.1 Manual

6.2 Overview perspective: Organizing the test

6.2.4.3 Linker tab

Figure 6.64: The Linker Options tab of the Properties view

Any linker options like object files or libraries can be added here. You can use predefined

variables like $(PROJECTROOT) or $(SOURCEROOT) as described in section Creating

databases and working with the file system. It is recommended to add such linker options

using the environment editor TEE: Configuring the test environment.

6.2.4.4 Attributes tab

Figure 6.65: The Attributes tab of the Properties view

TESSY 5.1 Manual 251

6 Reference book: Working with TESSY

The Attributes tab specifies settings required by the compiler or the target environment of the

module. Most attributes were preset and inherited from the Test Environment Editor (TEE).

You can change the default values or add new attributes to the Attributes pane.Insert attributes

Changes are carried out only locally and do not influence other modules.

To create a new attribute:

Þ Click on (New Attribute).

The Edit Attribute Properties dialog will be opened.

Þ Enter an attribute name and select an appropriate type, e.g. String. Available types are

String, Boolean, Integer, Real, File, Folder and Url.

Þ Select appropriate flags, depending on the type selected.

Figure 6.66: Creating a new attribute

To edit an existing attribute:

Þ Click on (Edit Attribute).

The Edit Attribute Properties dialog will be opened.

252 TESSY 5.1 Manual

6.2 Overview perspective: Organizing the test

You can remove user defined attributes. You cannot remove default attributes, only reset the

value to its default state, if changed before.

To remove an attribute respectively reset a default attribute:

Þ Click on .

6.2.4.5 Specification / Description / Comment tabs

Those tabs provide editable textboxes to be used for specifications, descriptions and com-

ments by the tester.

If you want to add Notes, you have to use the content menu in the Test Project view.

More information about notes can be found in section 6.2.3.10 Notes.

6.2.5 Requirements Coverage view

Figure 6.67: Requirements Coverage view

Within the Requirements Coverage view you can link the requirements with your test cases

or tasks. We will describe this view in section 6.4 Requirement management > 6.4.16 Re-

quirements Coverage view.

TESSY 5.1 Manual 253

6 Reference book: Working with TESSY

6.2.6 Test Items view

In the Test Items view you get an overview about your test cases and test steps, and you can

as well create test cases and test steps manually without using the Classification Tree EditorTest Items view

(CTE, see section 6.8). This is useful for simple test objects with a few test cases that can

be documented in a few words manually.

Figure 6.68: Test Items view

6.2.6.1 Icons of the view tool bar

Icon Action /
Comment

Shortcut /
Key

Executes selected test cases. Ctrl + E

Adds new test case. Ins

Adds new test step. Ctrl + Ins

Adds new group (currently inactive). Shift + Ins

Renumbers the test cases and test steps.

Expands all test cases.

Collapses all test cases.

Table 6.22: Tool bar icons of the Test Items view

254 TESSY 5.1 Manual

6.2 Overview perspective: Organizing the test

6.2.6.2 Column indicators

Indicator Status / Meaning

Displays expected results.

Displays evaluation macros results.

Displays call trace results.

Table 6.23: Column indicators of the Test Items view

6.2.6.3 Status indicators

Indicator Status / Meaning

The test case has no data.

The test case contains any data.

At least one test step of the test case is ready to be executed.

Test case passed: The actual results did match the expected results.

Test case failed: The actual result of at least one test step did notmatch
the expected results.

Test case variant that was inherited from a parent module..

New test case within a variant module.

Inherited and overwritten test case of a variant module..

Inherited and deleted test case of a variant module..

Test Case Generator: This test case generates test steps automatically,

i.e. if you enter a range. It does not contain any data yet.

Test Case Generator with data: This test case has automatically gener-

ated test steps.

Inherited and overwritten generator test case.

continue next page

TESSY 5.1 Manual 255

6 Reference book: Working with TESSY

Indicator Status / Meaning

The test step has no data.

The test step contains any data.

The test step is ready to be executed.

Test step passed: The actual result did match the expected results.

Test step failed: The actual result did not match the expected results.

Test step variant that was inherited from a parent module.

New test step within a variant module.

Inherited and overwritten test step of a variant module.

Inherited and deleted test step of a variant module.

Inherited and overwritten generator test step.

The test case has been created by the CTE and therefore can be

changed only within CTE. The test case does not contain any data.

The test case has been created by the CTE and therefore can be

changed only within CTE. The test case does contain some data.

The test case has been created by the CTE and therefore can be

changed only within CTE.At least one test step is ready to be executed.

The test step has been created by the CTE and therefore can be

changed only within CTE. It does not contain any data.

The test step has been created by the CTE and therefore can be

changed only within CTE. It does contain some data.

The test case has been created by the CTE and therefore can be

changed only within CTE.At least one test step is ready to be executed.

Table 6.24: Status indicators of the Test Items view

256 TESSY 5.1 Manual

6.2 Overview perspective: Organizing the test

6.2.6.4 Creating test cases and test steps

To create test cases and test steps: Creating test

cases
Þ Switch to the Test Items view.

Þ Click on (New Test Case).

The first test case is created and a test step is automatically added.

Þ Add further test steps with a click on (New Test Step).

Figure 6.69: First test case with one test step

Please notice the following habits of this view:

• The first number is the number of the test case, the number in brackets shows the quantity

of the test steps included.

• Test case numbers will be counted continuously: If you delete test cases, new test cases

will get a new number and existing test cases will not be renumbered.

• If you cannot click on “New Test Case” or “New Test Step” because the icons are inactive,

you might be in the wrong selection: Select the test object within the Test Project

view, then select the Test Items view.

• If you double-click a test case, the TDE will be opened to enter test data. Make sure to

adjust or review the passing directions first in the TIE.

Every test step contains a complete set of test data. For instance, the mechanism of test

steps can be used to achieve an initialization of the test object before executing the test step

that checks the actual test condition of the current test case.

TESSY 5.1 Manual 257

6 Reference book: Working with TESSY

6.2.6.5 Creating test steps automatically

You can generate test steps automatically, i.e. with ranges of input values:

Þ Click on the arrow next to the “New Test Case” icon .

Þ Select “New Generator Test Case” (see figure 6.70).

Figure 6.70: Selecting the test case generator

A new test case will be created. The star symbol indicates, that this test case is generated

and you cannot add any test steps, because these will be generated automatically (see figure

6.71).

Figure 6.71: A new test case generator is created

258 TESSY 5.1 Manual

6.2 Overview perspective: Organizing the test

To fill the data and generate the test steps, you will use the Test Data view within the TDE

perspective:

Þ Follow the description of section 6.9.7.8 Generating test steps automatically.

After generating one or more test steps, the icon of the test case within the Test Items view

will change to yellow as well as test steps (see figure 6.72).

Figure 6.72: A test step was generated and is ready to be executed

The test steps are read only! You can change the type of the test case and test steps to

“normal”. That way you can edit the test steps as usual.

To change the status to normal,

Þ right-click the test case and select “ChangeTest CaseType to Normal” (see figure 6.73).

TESSY 5.1 Manual 259

6 Reference book: Working with TESSY

Figure 6.73: Selecting “Change Test Case Type to Normal”

260 TESSY 5.1 Manual

6.2 Overview perspective: Organizing the test

The test case and test steps are changed to type “normal” but will indicate originally being Changing test

case to type

normal

generated with a status (see figure 6.74).

Figure 6.74: The test case and test steps originally being generated

You can reverse the action with a rightclick and choose “ChangeTest CaseType to Generator”

from the context menu.

TESSY 5.1 Manual 261

6 Reference book: Working with TESSY

6.2.6.6 Test cases and steps created within the CTE

If test cases and test steps were assigned within CTE, the icons of test cases and test steps
within the Test Items view are displayed with a CTE symbol to indicate that you can change
those test cases only within CTE. The following icons indicate CTE created test cases and
test steps in the Test Items view:

Indicator Status / Meaning

Test case created within the CTE.

Test step created within the CTE.

Table 6.25: Status indicators for test cases and test steps created in the CTE

6.2.6.7 Test cases and steps inherited from a variant module

If test cases and test steps were inherited of a variant module as described in chapter 6.2.3.9

Creating variant modules, you can add, delete and overwrite the test steps and data.

The following icons indicate the different test case and test step statuses in the Test Items
view:

Indicator Status / Meaning

Filled triangle – Test case inherited and overwritten.

Filled triangle – Test step inherited and overwritten.

Triangle – Test case inherited.

Triangle – Test step inherited.

Test case added.

Test step added.

Test case deleted.

Test step deleted.

Table 6.26: Various status indicators for test cases and test steps in the Test Items view

262 TESSY 5.1 Manual

6.2 Overview perspective: Organizing the test

Important: Deleted test cases/steps are only faded out within the child module.

They can be made available again using “Restore Deleted” from the context menu.

Information about how to assign data in general and particularly to variants using the

CTE is provided in subsection 6.8.7.1 Assigning test data to the CTE.

6.2.6.8 Renumbering test cases

After deleting test cases or test steps, you can renumber the existing test cases and steps:

Þ Click on (Renumber Test Cases).

A notice will appear that all test cases will be renumbered (see figure 6.75).

Þ Click “OK”.

Figure 6.75: All test cases will be renumbered

TESSY 5.1 Manual 263

6 Reference book: Working with TESSY

6.2.7 Test Results view

Figure 6.76: Test Results view

After a test run the Test Results view will display the coverage measurement results and the

results of expected outputs, evaluation macros and call traces if applicable.

Important: The view is context sensitive: If the Test Results view is empty, make

sure a test run is selected within the Test Project view!

6.2.8 Evaluation Macros view

Figure 6.77: Evaluation Macros view

264 TESSY 5.1 Manual

6.2 Overview perspective: Organizing the test

This view lists the detailed results of the evaluation macros if the usercode of the test ob-

ject contains any evaluation macros, see 6.9.11.3 Using evaluation macros. The results are

displayed wherever they occur within the usercode, e.g. within stub functions or test step epi-

logs. You can select the filter items on the left side to show only the evaluation macro results

for e.g. the first test step. The list of results on the right will be filtered accordingly.

6.2.9 Console view

Figure 6.78: Console view

The Console view displays messages of sub processes invoked during the compilation and

execution process of the test driver application. It provides a quick overview of any error

messages.

TESSY 5.1 Manual 265

6 Reference book: Working with TESSY

6.2.9.1 Icons of the view tool bar

Icon Action / Comment

Saves to file.

Terminates test executions e.g. in case of endless loops.

Clears the Console view.

Locks the scrolling function.

Enables word wrap for the console.

Pins the Console.

Displays the selected console.

Opens the console.

Table 6.27: Tool bar icons of the Console view

6.2.9.2 Handling

You can enable the Console view to be shown whenever an error occurs during C-source

analysis or test driver compilation:

Þ In the menu bar click on “Window”.

Þ Open the “Preferences”.

Þ Click on “Test Execution Settings” and check the setting “Show console on error” (see

figure 6.79).

266 TESSY 5.1 Manual

6.2 Overview perspective: Organizing the test

Figure 6.79: Preference “Show console on error”

6.2.10 Suspicious Elements view

Since the view refers to changes of requirements, this issue is discussed in section 6.4.8

Suspicious Elements view.

6.2.11 Problems view

In this view information about possible errors that appear e.g. in the process of test executions

is displayed. It is divided into four columns: Message, Location, File and Line. The first column

gives you a detailed error message with all necessary information. The other three contain

all available information about where the error is located.

TESSY 5.1 Manual 267

6 Reference book: Working with TESSY

Figure 6.80: Problems view with error message

The Problems view also appears in the Requirement perspective.
Within the pull-down menu in the Problems view it is possible to find and select the respective
module in the Test Project view in the Overview perspective, copy it to the clip board or open
the Problems Log:

Icon Action /
Comment

Shortcut /
Key

Copies to Clipboard. Ctrl + C

Finds the problematic area in the Project view. Ctrl + F

Deletes the message. Del

Table 6.28: Icons of the content menu

6.2.12 Variants view

Figure 6.81: Variants View

268 TESSY 5.1 Manual

6.2 Overview perspective: Organizing the test

The variants view supports the variant management in TESSY:You can create a variant tree

according to the software variant structure you are going to test. These testing variants are

useful for tagging TESSY modules to certain software variants which facilitates filtering and

creation of variant TESSY modules.

You do not need to create a variant tree in order to create variant modules. Any mod-

ule can be a parent module of another. The variant tree just helps to keep the module

variant tree in sync with the actual inheritance structure of the software variants being

tested.

A module can be assigned to a variant using the properties section “Variants”:

Þ Select the module.

Þ Switch to the “Variants” tab and select the respective variant.

Figure 6.82: Assign a variant to a module

TESSY 5.1 Manual 269

6 Reference book: Working with TESSY

Let’s assume you have the following structure of base tests that shall be cloned as variant

modules in order to test all software variants:

Figure 6.83: Example test collection with base modules

To create variant modules for each of the base modules do the following:

Þ Create a new test collection for each variant and choose (New Variant Modules…)

from the context menu.

Þ Within the “Create Variant Modules” dialog select all base modules that shall be cloned

as variant modules.

270 TESSY 5.1 Manual

6.2 Overview perspective: Organizing the test

Figure 6.84: Create variant modules dialog: Filtering and selection

Þ You can filter the modules being displayed by selecting the desired variant. Only po-

tential parent modules according to the variant hierarchy will be displayed.

TESSY 5.1 Manual 271

6 Reference book: Working with TESSY

Figure 6.85: Test Project view with new variant modules

The new variant modules will be created within the selected test collection (including the

folder hierarchy if the option “Take over folder hierarchy” was checked). The properties of a

variant module shows the assigned variant and the parent module which can be edited using

the edit button (see figure 6.86).

272 TESSY 5.1 Manual

6.2 Overview perspective: Organizing the test

Figure 6.86: Properties view variants tab for editing the parent module

Important: All test data of a variant module will be deleted if you select another

parent module.

6.2.13 Coverage Reviews view

The new Coverage review feature supports handling of unreached source code lines when

measuring code coverage using the new Code Access (CA) and Hyper Coverage (HC) fea-

tures. Source code lines can be marked with predefined as well as arbitrary comments for

documentation of why they cannot be reached. Typical situations are hidden debug code or

unreachable default branches.

The Coverage Reviews view is located within the CoverageViewer (CV) perspective, for more

information please refer to subsection 6.11.13 Coverage Reviews view.

TESSY 5.1 Manual 273

6 Reference book: Working with TESSY

6.3 C/C++: Editing the C-source

Important: The C/C++ perspective is not displayed by default! Open the perspec-

tive as described below!

Figure 6.87: Perspective C/C++

Within the C/C++ perspective you can edit your C-source file.

6.3.1 Opening the C/C++ perspective

Þ Within the Test Project view right-click the desired test object or module.

274 TESSY 5.1 Manual

6.3 C/C++: Editing the C-source

Þ Select “Edit Source” (see figure 6.88).

Figure 6.88: Opening the C/C++ perspective

6.3.2 Structure of the C/C++ perspective

Pane Location
(default)

Function

Project Explorer

view

left To view the includes and the functions of the

C-source file.

Editor view upper middle To edit the C-source file.

Outline view right To overview all functions of the C-source file.

continue next page

TESSY 5.1 Manual 275

6 Reference book: Working with TESSY

Pane Location
(default)

Function

Console view lower middle Same view as within the Overview perspective.

Properties view lower middle Same view as within the Overview perspective.

Table 6.29: Structure of the C/C++ perspective

Important: Most party of this view are usual Eclipse functions! Please refer to the

Eclipse documentation: http://help.eclipse.org/

6.3.3 Editor view

Editor view

Figure 6.89: Editor view within the C/C++ perspective

276 TESSY 5.1 Manual

http://help.eclipse.org/

6.3 C/C++: Editing the C-source

Important: The Editor view is not a normal view in Eclipse sense, therefore you

cannot move the view as other views of the perspectives!

6.3.3.1 Editing the C-source file

Þ Open the C/C++ perspective with a right click on the desired test object or module within

the Test Project view.

Þ Select “Edit Source” (see figure 6.90).

Figure 6.90: Opening the C/C++ perspective

Þ Edit the C-source file.

TESSY 5.1 Manual 277

6 Reference book: Working with TESSY

The view is context sensitive: If you choose a function within the Outline view, the

function will be highlighted within the Editor view!

6.3.4 Project Explorer view

Figure 6.91: Project Explorer view within the C/C++ perspective

Within this view you can browse easily between the includes and have an overview of all

functions of the C-source file.

The view is context sensitive: If you choose a function within the Project Explorer view, the

function will be highlighted within the Editor view.

6.3.5 Outline view

The Outline view displays all functions of the C-source.Outline view

The view is context sensitive: If you choose a function within the Outline view, the function

will be highlighted within the Editor view (see figure 6.92).

278 TESSY 5.1 Manual

6.3 C/C++: Editing the C-source

Figure 6.92: Outline view within the C/C++ perspective

6.3.5.1 Icons of the view tool bar

Icon Action / Comment

Sorts the functions in alphabetical order.

Hides fields.

Hides static members.

Hides non-public members.

Hides all inactive elements.

Table 6.30: Tool bar icons of the Outline view

6.3.6 Properties view

The Properties view displays all the properties which you organized within the Overview per-

spective. Most operations are possible. 6.2.4 Properties
view

For changing a source switch to the Properties view within the Overview perspective.

TESSY 5.1 Manual 279

6 Reference book: Working with TESSY

6.3.7 Console view

The Console view displays messages of sub processes invoked during the compilation and

execution process of the test driver application. It provides a quick overview about any error

messages.

It is the same view as within the Overview perspective, see section 6.2.9 Console view.

280 TESSY 5.1 Manual

6.4 Requirement management

6.4 Requirement management

The basis for all testing activities should be a precise functional specification of the sys-

tem under test. All testing activities should be caused by requirements described within the

functional specification and each change of the requirements need to be tracked in order

to adjust the tests if necessary. That is the reason why TESSY incorporates a requirement

management solution that provides a basic environment for requirements engineering with

the following features:

• Exporting and importing requirements

• Creating new requirements

• Comparing requirement versions

• Linking test cases with requirements

• Automatic versioning of requirement changes

• Adding images to requirements

• Marking different versions of requirements as semantically equivalent

There is a plugin available for the integration of Polarion. For more information please

refer to the application note “Polarion Export” in TESSY (“Help” > “Documentation”)

You will use different views and perspectives for your requirement management:

1. To create and import requirements, track changes and versionize your requirements

use the Requirement Management perspective.

6.4.1 Structure
of the
Requirement
Management
perspective

2. To link requirements with test cases use the Link Matrix view or the Requirements Cov-

erage view of the Overview perspective.
6.4.16

Requirements
Coverage view

TESSY 5.1 Manual 281

6 Reference book: Working with TESSY

6.4.1 Structure of the Requirement Management perspective

Figure 6.93: Requirement Management perspective

Pane Location
(default)

Function

RQMT Explorer view left To create requirements.

Requirements List view upper center To view imported requirements as list for a selected

document or folder.

Requirement Editor view upper center To organize the requirements, e.g. adding infor-

mation as text or images, opens only after double-

clicking on a requirement in the RQMT Explorer

view.

Test Means view lower center To list the available test means, up to unit test and

component test.

Validation Matrix view /

VxV Matrix view

upper center To assign requirements to test means, only visible

when there is a validation matrix and after double-

clicking on it.

Link Matrix view lower center To link requirements with modules, test objects,

test cases and other requirements.

continue next page

282 TESSY 5.1 Manual

6.4 Requirement management

Pane Location
(default)

Function

Attached File view lower center To attach files to requirements.

Attributes view lower center To edit a list of attributes for a requirement.

Suspicious Elements

view

lower center To have a quick look over all suspicious (modified)

elements.

History view right To display the version history of the selected re-

quirement or document.

Related Elements view right To display linked elements for a selected require-

ment and compare these versions.

Problems view right

Document Preview right To edit the HTML contents of the requirements,

only visible after double-clicking the respective re-

quirement.

Requirements Coverage

view

ÞOverview
perspective

To select and link the requirements.

Table 6.31: Structure of the Requirement Management perspective

Important: To gather all information about managing requirements within this

chapter, we will describe the Requirement Coverage view in this chapter, although

the workflowmakes it reasonable to place this view within the Overview perspective.

TESSY 5.1 Manual 283

6 Reference book: Working with TESSY

6.4.2 RQMT Explorer view

Figure 6.94: RQMT Explorer view

The RQMT Explorer view displays an overall view of all requirements of a requirementRQMT Explorer

view document. If you double-click a requirement, the requirement editor will open to display all

information of the specific requirement (see figure 6.95).

Figure 6.95: Double-clicking on a requirement opens the requirement editor

284 TESSY 5.1 Manual

6.4 Requirement management

6.4.2.1 Icons of the view tool bar

Icon Action /
Comment

Shortcut /
Key

Creates a new document.

Creates a new chapter. Shift + Ins

Creates a new requirement. Ins

Creates a new text section.

Creates a new validation and verification matrix.

Locks the marked item. Ctrl + L

For editing the document hierarchy.

For adding notes.

Generates a document report.

Deletes the marked item. Del

Syncs selection with editor.

Adds filter.

Table 6.32: Tool bar icons of the RQMT Explorer view

Please note that with a right click on an element usually a context menu opens. It

contains the same buttons as shown in table 6.32. Depending on the circumstances

there might be more options available.

TESSY 5.1 Manual 285

6 Reference book: Working with TESSY

6.4.2.2 Status indicators

Indicator Status / Meaning

The requirement document is locked.

Table 6.33: Status indicators of the RQMT Explorer view

6.4.2.3 Creating requirements and organizing a document structure

To create requirements:Creating

requirements
Þ In the RQMT Explorer view tool bar click on (New Document).

Þ Then click on (New Requirement (Insert)) to create a requirement.

The RQMT Explorer view also offers the option to organize the document structure. You

can adapt it to your needs and therefore gain a better overview over sometimes numerous

elements. This includes the opportunity to add chapters and text elements to documents as

well as text elements to chapters (see figure 6.96).

To create new elements of all kind in the document structure use the RQMT Explorer tool bar

(see table 6.32) or the context menu after a right click on the respective element. By default

new elements are placed at the end of the document or chapter column and new documents

appear on document level. It is possible to drag chapters, test elements and requirements

into the desired position, even into other documents.

Figure 6.96: Example for the document structure within the RQMT Explorer view

286 TESSY 5.1 Manual

6.4 Requirement management

6.4.2.4 Importing requirements

In the following you find a brief overview about importing requirements. For more

detailed information please refer to the application note “Importing Exporting Re-

quirements” in TESSY (“Help” > “Documentation”)

Þ Right-click a document or right-click within the blank RQMT Explorer view and select

“Import” from the context menu (see figure 6.97). When no document is selected, the

import will create a new document.

Figure 6.97: Importing requirements

Þ The Import dialog opens (see figure 6.98).

TESSY 5.1 Manual 287

6 Reference book: Working with TESSY

Figure 6.98: Import dialog

Þ Click on “…” and select the file with the requirements.

Þ Select the File Content Type. For the possible types see table 6.34.

TESSY will pre-select the content type according to the contents of the cur-

rently selected file. If the file cannot be imported, this field will be empty. You

can select a content type that you think the file contains and start importing.

TESSY will then show the errors within the file.

Þ Select the Target Document and click “OK”.

If no existing document has been selected, the new requirements will be

imported into a new document. You can also select any existing document

within the list to update this document. Whether you will see existing re-

quirement documents or validation matrices depends on the file content

type.

288 TESSY 5.1 Manual

6.4 Requirement management

You can import following formats of requirement sources: Formats of

requirement

sourcesFormat Comment

*.txt Simple ASCII format were each line is recognized as a requirement. This is the

very basic format that allows importing all sorts of text as requirements.

*.reqif Requirements interchange format (ReqIF), used for import/export of require-

ments from third party requirement management tools (e.g. DOORS and Po-

larion). For further information see http://www.omg.org/spec/ReqIF.

*.csv, *.tsv Comma or tab separated ASCII text with a headline indicating the column

names. This format allows specifying requirement id, version and all other

available requirement properties.

*.xml TESSY specific XML format which provides specifying the chapter structure of

a requirement document. All available requirement properties may be specified

within this format. It is the recommended exchange format when importing

requirements from any other requirement management systems.

Table 6.34: Possible formats of requirement sources

The newly imported requirement document will be displayed in the RQMT Explorer view (see

figure 6.99).

Figure 6.99: The new requirement document

The asterisk (*) indicates that the requirement is new and not committed yet. A mouseover New imported

requirementshows a tooltip (see figure 6.100).

TESSY 5.1 Manual 289

http://www.omg.org/spec/ReqIF

6 Reference book: Working with TESSY

Important: New imported requirements need to be committed (see section 6.4.2.5

Committing requirements).

Figure 6.100: The asterix and a mouseover shows the status “new”.

6.4.2.5 Committing requirements

The requirements document needs to be checked-in as initial revision:Committing

requirements
Þ Select the document within the RQMT Explorer view and click on

(Commit Changes) in the global tool bar.

You can commit all changes or changes of selected elements (see figure 6.101).

Figure 6.101: Committing options

Þ Enter a comment and click “OK” (see figure 6.102).

290 TESSY 5.1 Manual

6.4 Requirement management

Figure 6.102: Comment for the initial revision of the commit

An initial revision of the requirement document will be created.

By ticking the box “Increment major version” a major version with a new version number

will be created.

If requirements have been changed, every commit creates a new requirement ver-

sion. The reason for this is traceability, only with these different requirement versions

changes in the requirements can be traced.

Figure 6.103: After the commit

TESSY 5.1 Manual 291

6 Reference book: Working with TESSY

You can also discard the changes you made by clicking on (Discard Changes)

in the global tool bar. This will restore the last checked in status. With a click on the

little arrow next to the icon you can set whether you want to discard all changes or

changes of selected elements only.

6.4.2.6 Renaming a document / alias

You can rename a requirement document and assign an alias which is useful for the reporting,

because you have an abbreviation of the document name when building the requirement

identifier. The identifier will be: [document alias]:[id]-[version]. To rename or give an alias:

Þ Right-click the document and select “Properties” from the context menu.

Þ Change the name or choose an alias (in this Project: “Example1” it is “IVIR’) and click

“OK”.

Figure 6.104: Changing the alias of the new requirement document

The new alias “IVIR” will be used within the Requirements List view and the document pre-

view (see figure 6.105). (The document preview will only be visible after double-clicking the

respective requirement.)

292 TESSY 5.1 Manual

6.4 Requirement management

Figure 6.105: The alias of a requirement is used in various views

Information about editing requirements can be found in section 6.4.4.3 Editing re-

quirements.

6.4.3 Requirements List view

Figure 6.106: Requirements List view

TESSY 5.1 Manual 293

6 Reference book: Working with TESSY

6.4.3.1 Icon of the view tool bar

Icon Action /
Comment

Shortcut /
Key

Shows all descendants Ctrl + F

Table 6.35: Tool bar icons of the Requirements List view

6.4.4 Requirement Editor view

Figure 6.107: Double-clicking on a requirement opens the Requirement Editor

The Requirement Editor will also open by double-clicking in a requirement in the Requirement

List view.

6.4.4.1 Icon of the view tool bar

Icon Action / Comment

Adds an image to the element.

Table 6.36: Tool bar icon of the Requirements List view

294 TESSY 5.1 Manual

6.4 Requirement management

6.4.4.2 Viewing requirements, versions, IDs

Within the Requirement Editor the requirements are displayed with text, figures, if available,

versions and IDs (see figure 6.108).

Figure 6.108: Requirements Editor with test and a figure

Every requirement has an explicit ID and a version number. TESSY provides the following Requirements

List viewtwo mechanisms for assigning requirement version numbers:

• Automatic: TESSY assigns and increments version numbers automatically if the import

file does not contain version numbers. This is the normal behavior when importing

requirements from text files or spreadsheets. When checking-in requirements, you can

decide to increment the major or minor version number (e.g. major 1.0 to 2.0 or minor

1.0 to 1.1).

• Using external version numbers: It is possible to use existing requirement version

numbers from the import file. This is useful if you get requirements from an external

requirements management tool and need to import exactly the same version numbers

that where already assigned to the requirements. The only prerequisite for this kind of

import is the consistency of the version numbers.

TESSY 5.1 Manual 295

6 Reference book: Working with TESSY

When using external version numbers, the following checks of the imported data will beUsing external

version numbers performed when importing:

• If any requirement content is changed but the version number is not changed, TESSY

will change the minor version number (e.g. from 1.0 to 1.1).

• If the version number was changed but no requirement content was changed, a warning

will be reported.

• If the new version number is less than the highest existing version number for a require-

ment, an warning will be reported.

Gaps within the numbering of requirement IDs are allowed.

The numbering should be ascending.

6.4.4.3 Editing requirements

To edit a requirement:

Þ Double-click on the requirement you want to edit.

The requirement will be opened within the requirement editor in the center of the Re-

quirement Management perspective.

Þ After editing, click on to save the changes.

TESSY will now create a locally modified version of the requirement which will be illus-

trated with a “>” in front of the requirement name (see figure 6.109).

Figure 6.109: The first requirement was modified

296 TESSY 5.1 Manual

6.4 Requirement management

Þ Commit your changes with a click on .

Þ A new version of the requirement will be created and you need to decide either to in-

crement the major or the minor version number within the check-in dialog (see figure

6.102).

If you did only minor changes or want to commit a draft update of a requirement, you

can decide to increment only the minor version. In all other cases, it is recommended

to increment the major version.

After committing, the ID of the requirement will be updated to display the new version

(see figure 6.110).

Figure 6.110: The first requirement has the version number 2.0

6.4.5 Validation Matrix view / VxV Matrix view

Figure 6.111: VxV Matrix view

TESSY 5.1 Manual 297

6 Reference book: Working with TESSY

TheVxVmatrix supports the assignment of requirements to the test means used for validation

of the requirement. This helps filtering out those requirements that are to be tested with unit

and component testing. The assignments within the VxV matrix will be used for requirement

filtering for reporting.

6.4.5.1 Icons of the view tool bar

Icon Action /
Comment

Shortcut /
Key

Adds all test means to the matrix.

Adds all requirements to the matrix.

Removes all unused items. Del

Table 6.37: Tool bar icons of the VxV Matrix view

6.4.6 Test Means view

Figure 6.112: Test Means view

Requirements will be tested using different test means, e.g. unit test, system test or review.

The default test means used within TESSY are for unit and component testing. You can filter

your requirements by test mean for later reporting issues.

298 TESSY 5.1 Manual

6.4 Requirement management

6.4.6.1 Icons of the view tool bar

Icon Action /
Comment

Shortcut /
Key

Imports test means.

Exports test means.

Creates a new test mean. Ctrl + N

To edit the selected test mean. Alt + C

Removes the selected test mean. Only test means that are

not used can be deleted.

Del

Table 6.38: Tool bar icons of the Test Means view

6.4.7 Link Matrix view

Figure 6.113: Link Matrix view

Within the Link Matrix view you can link tasks, modules, test objects and test cases with

requirements. It shows the link relationship of the elements currently contained within the Link Matrix view

matrix.

In the example above (see figure 6.113) the requirement [IVIR:1-1.0] is linked with three test

cases and one task, i.e. in total there are four tests linked to that requirement.

TESSY 5.1 Manual 299

6 Reference book: Working with TESSY

6.4.7.1 Icons of the view tool bar

Icon Action /
Comment

Shortcut /
Key

Transposes the matrix, i.e. changes the rows and columns. Ctrl + T

Adds all currently linked elements based on the elements

selected within the first column of the matrix.

Adds all unlinked requirements.

Adds all unlinked test cases and tasks.

Removes selected elements from the Link Matrix. Does

NOT delete the element but removes it from the view.

Del

Removes all elements from the Link Matrix. Does NOT

delete the element.

Table 6.39: Tool bar icons of the Link Matrix view

6.4.7.2 Status indicators

Indicator Status / Meaning

The link is suspicious. Indicates that changes in the respective re-

quirement need to be updated.

No link possible. Indicates that it is not possible to add a link here.

Table 6.40: Status indicators of the Suspicious Elements view

6.4.7.3 Adding and removing elements

To add elements to the Link Matrix view:

Þ Drag & drop requirements, modules, test objects or test cases into the matrix. The

elements will be shown within one of the rows in the first column if they are dropped

there. If they are dropped in one of the right columns, they will appear on top of the

respective rows of the matrix.

300 TESSY 5.1 Manual

6.4 Requirement management

To exchange rows or columns, click on within the view tool bar.

Þ Click on to add all unlinked requirement.

Þ Click on to add all unlinked test cases.

Þ Use the context menu entry “Add to Link Matrix” within the RQMT Explorer view, Test

Project view or Test Items view.

Figure 6.114: Adding elements to the Link Matrix view

To remove elements from the Link Matrix view:

Þ Click on (Remove All Elements) in the tool bar to remove all currently displayed

elements.

Þ Click on (Remove Selected Element) in the tool bar will remove the currently se-

lected element within a row of the matrix (if any element is selected).

This will only remove the elements from the matrix view, no changes will be

made to the elements themselves. They are not deleted in the process and

set links remain unchanged.

TESSY 5.1 Manual 301

6 Reference book: Working with TESSY

Important: Test cases can not be added to the LinkMatrix view in the Requirement

Management view. To do so you have to switch to the Overview perspective (see

figure 6.115). Test cases can also be added to the LinkMatrix in theTDE perspective

or the SCE perspective.

Figure 6.115: Adding Test Cases to the Link Matrix view in the Overview perspective

302 TESSY 5.1 Manual

6.4 Requirement management

Please notice the following habits:

• The Link Matrix view is available within the Overview perspective and within the Require-

ment Management perspective.

• The Link Matrix view will also be visible within the TDE perspective and the SCE perspec-

tive if elements had already been added.

• The current contents of the Link Matrix are remembered when restarting TESSY but the

matrix itself is not persisted in any way. You can add or remove elements and this will not

cause any changes to the elements.

• The search button “Add All Elements Linked to Elements in Rows” allows finding and

adding the elements that are linked to the elements currently displayed within the rows of

the matrix.

• Setting links or changing elements will cause dependent elements to become suspicious.

Please refer to section 6.4.8 Suspicious Elements view for details.

6.4.7.4 Updating requirement links

If requirements have changed, the links within the Link Matrix view will be declared suspicious

with an exclamation mark (see figure 6.116).

Figure 6.116: Link Matrix view with suspicious elements

General handling of links:

Þ A double click on a link within the matrix will delete the link and another double click

will create the link again.

TESSY 5.1 Manual 303

6 Reference book: Working with TESSY

To update suspicious links:Updating

suspicious links
Þ Double-click a link within the matrix. Click “Yes” in the opening popup window if you

want to update the selected link.

Þ Right-click a cell and select “Update Selected Suspicious Link” from the context menu.

The selected link will be updated.

Þ Right-click a row and select “Update Suspicious Links” from the context menu. All links

within the selected row will be updated.

6.4.8 Suspicious Elements view

Figure 6.117: Suspicious Elements view

The Suspicious Elements view allows finding out the reason why an element is suspicious.Suspicious

Elements view In this case the version number has changed and a short description has been added.

304 TESSY 5.1 Manual

6.4 Requirement management

During the testing process tasks, modules, test objects and test cases will be linked

to requirements indicating that the respective requirements are tested by the linked

elements.

Whenever a requirement changes because of modifications or because a new ver-

sion has been checked in, the linked elements will become suspicious and need to

be reviewed. The suspicious status will be indicated by an exclamation mark icon

decorator, i.e. for a suspicious test object.

6.4.8.1 Icons of the view tool bar

Icon Action / Comment

Sets elements semantic equal (all elements or selected element).

Updates links (all links or selected link).

Compares the versions.

Table 6.41: Tool bar icons of the Suspicious Elements view

“Set elements semantic equal” should only be used in situations where the change of

a requirement does not change its meaning such as spelling corrections, formatting

etc. In all other cases the link should be updated.

6.4.8.2 Determine changes that caused suspicious status

When you have linked the test object and some test cases, any changes to the linked require-

ments will cause the linked elements to become suspicious. Please switch to the Overview

perspective to be able to see that.

TESSY 5.1 Manual 305

6 Reference book: Working with TESSY

Figure 6.118: Suspicious test object and test cases in the Overview perspective

Determine the related modified requirements that causes the status of a test object being

suspicious within the Suspicious Elements view:

Þ Select the suspicious test object within the Test Project view. (Again you have to do that

within the Overview perspective.)

The Suspicious Elements view will display the changed requirements (see figure 6.119).

Figure 6.119: Suspicious test object and linked modified requirements

306 TESSY 5.1 Manual

6.4 Requirement management

As you can see in figure 6.119 above, the requirement text of the requirement “[IVIR:3-

2.2]:Zero” has been edited. Therefore it has the addition “MODIFIED”.

If you select a test case in the Overview perspective, the Suspicious Elements view will also

show the changed requirement(s) (see figure 6.120).

Figure 6.120: Selecting the suspicious test case shows the modified requirement(s)

TESSY 5.1 Manual 307

6 Reference book: Working with TESSY

Within the Differences view you can determine the exact differences:

Þ Click on (Compare Versions).Differences view

The Differences view shows all changes of the requirement (see figure 6.121).

Figure 6.121: Comparing the versions of the requirement

You need to determine if the change of the requirement affects the linked test cases and

adapt the test data if necessary.

If no changes to the test cases are required, update the link to acknowledge the requirement

change. Therefore click on (Update Link). The suspicious icon will then disappear for the

respective test case.

For more information about the Difference view go to section 6.4.12 Differences view

/ Reviewing changes.

308 TESSY 5.1 Manual

6.4 Requirement management

You can also update requirement links in the Link Matrix view.

6.4.9 Attached Files view

Figure 6.122: Attached Files view

The Attached Files view allows adding arbitrary files to the selected requirement. You can Attached Files

viewadd additional documents with detailed information about the requirement. The files will be

stored within the TESSY database.

6.4.9.1 Icons of the view tool bar

Icon Action /
Comment

Shortcut /
Key

Adds the selected file. Ctrl + N

Creates a new folder. Ctrl + B

To edit a name or description of the selected folder or file. Alt + C

Deletes the selected file. Del

Table 6.42: Tool bar icons of the Attached Files view

TESSY 5.1 Manual 309

6 Reference book: Working with TESSY

6.4.10 Attributes view

Figure 6.123: Attributes view

The Attributes view allows adding arbitrary attributes for the selected requirement or require-Attributes view

ment document.

Important: New attributes should be created for the requirement document. They

will then be inherited to each requirement of the document and can be overwritten

on requirement level.

There are three predefined attributes named “Content Type”, “Enable Evaluation” and “En-

able Suspicious Calculation” on document level that control the behavior of the requirement

evaluation and suspicious calculation for elements linked to requirements.

6.4.10.1 Icons of the view tool bar

Icon Action /
Comment

Shortcut /
Key

Creates a new attribute. Ctrl + N

Edits the selected attribute. Ctrl + E or

double click

continue next page

310 TESSY 5.1 Manual

6.4 Requirement management

Icon Action /
Comment

Shortcut /
Key

Deletes the selected attribute. Del

Table 6.43: Tool bar icons of the Attributes view

6.4.10.2 Editing attributes of a requirement

Figure 6.124: Editing the requirement settings within the Attributes view

To edit an attribute:

Þ Within the RQMT Explorer view select a requirement, a requirement document, or a

requirement chapter.

The Attributes view will display the attributes for the selected element.

TESSY 5.1 Manual 311

6 Reference book: Working with TESSY

Þ Right-click the desired attribute and select “Edit” from the pull-down menu.

Þ Change value, name or description of the attribute if possible or add an description.

Please note that it is not always possible to edit all of the given opportunities. Usually

it is possible to edit the value but name and description can only be edited where the

attribute was originally created. Type and version of a requirement can not be edited.

For example you can edit the “Content Type” version of a requirement in theAttribute Settings.

This is necessary to enable the HTML Document View and the HTML Editing. The “Content

Type” of a document needs to be “HTML” instead of “PLAIN”.

To do so change the “type” to HTML (instead of plain text):

Þ Select the desired requirement document within the RQMT Explorer view.

Þ Right-click the attribute “Content Type” within the Attributes view and select “Edit”.

Þ Change the value to “HTML” and click “OK” (see figure 6.125).

Figure 6.125: Changing the “Content Type” attribute to HTML

312 TESSY 5.1 Manual

6.4 Requirement management

For more information about editing requirements in the HTML editor go to section

6.4.15.2 Editing the requirement as HTML version.

6.4.11 History view

Figure 6.126: History view

TESSY 5.1 Manual 313

6 Reference book: Working with TESSY

6.4.11.1 Icons of the view tool bar

Icon Action /
Comment

Shortcut /
Key

Two versions of a requirement are set to be semantically

equal if their contents reflect the same semantics but minor

changes were made, e.g. spelling errors.

Alt + S

Unsets semantic equal. You need to have two versions of a

requirement selected to do this operation.

Alt + U

Compares the versions. Ctrl + D

Table 6.44: Tool bar icons of the History view

6.4.12 Differences view / Reviewing changes

The Differences view will be displayed within the lower pane, which provides a direct com-Differences view

parison of the respective requirement versions printed as text (see figure 6.127).

Each requirement has a version history showing all of its changes.Reviewing

changes To review the changes between any two versions of the history or between a historic version

and the current version,

Þ select either two versions within the History view to compare these versions or select

only one version within the view if you want to compare it against the current version.

Þ Click on (Compare) in the tool bar.

314 TESSY 5.1 Manual

6.4 Requirement management

Figure 6.127: Differences view

6.4.12.1 Icons of the view tool bar

Icon Action / Comment

Navigates to the left.

Navigates to the right.

Switches on or off the matching of words.

Switches on or off the ignoring of cases.

Switches on or off the ignoring of whitespace.

Sets the layout to vertical.

Sets the layout to horizontal.

Table 6.45: Tool bar icons of the Differences view

TESSY 5.1 Manual 315

6 Reference book: Working with TESSY

6.4.13 Related Elements view

In this view you can see the links of requirements to other requirements, e.g. when creating

refined requirements based on a given requirements document.

After selecting a requirement in RQMT Explorer this view presents all linked elements of

the respective requirement. It shows all sub requirements or the linked main requirements

divided into Incoming Links and Outgoing Links.

Figure 6.128: Related Elements view and its interrelations

Figure 6.129: Related Elements view

316 TESSY 5.1 Manual

6.4 Requirement management

Figure 6.130: Related Elements view with Incoming and Outgoing Links

6.4.14 Problems view

As the the Problems view also appears in the Overview perspective please refer to subsection

6.2.11 Problems view.

6.4.15 Document Preview

Important: You have to open the Document Preview by double-clicking on the

appropriate requirement document!

TESSY 5.1 Manual 317

6 Reference book: Working with TESSY

Figure 6.131: View Document Preview

It is possible to open the Document Preview in other perspectives as well. Therefore go to

“Window” > “Show View…”, select “Document Preview” from the list and then click “OK”.

A new Document Preview will open where you can select the desired Requirement Document

to be displayed (see figure 6.132).

318 TESSY 5.1 Manual

6.4 Requirement management

Figure 6.132: Newly opened Document Preview within the TIE perspective

6.4.15.1 Icons of the view tool bars

Icon Action / Comment

Displays the test means within the requirement document.

Displays the sub requirements in the requirement document.

Toggles to the HTML inline editor (only available of the “Content Type” of the

document is “HTML”).

Back to parent.

Back home.

Exports the HTML version as HTML file.

Refreshes the view. Necessary after editing any requirement.

Table 6.46: Tool bar icons of the Document Preview

TESSY 5.1 Manual 319

6 Reference book: Working with TESSY

6.4.15.2 Editing the requirement as HTML version

After you created or imported requirements, you can edit them as HTML version:

Þ Click on the icon (Toggle HTML Editing).

Þ If a note is displayed, that the “Content Type” must be set to HTML, refer to section

6.4.10.2 Editing attributes of a requirement. After changing the content type to HTML,

refresh the Document Preview with a click on .

Þ Click in a field with any description of a requirement. An HTML inline editor appears.

Þ With a click on the icon you can switch between the WYSIWYG editor and plain

HTML (see figure 6.133).

Figure 6.133: HTML editing within the inline editor (WYSIWYG and plain HTML)

6.4.16 Requirements Coverage view

Important: By default you will find the Requirements Coverage view within the

Overview perspective!

320 TESSY 5.1 Manual

6.4 Requirement management

Figure 6.134: Requirements Coverage view with no linked requirements

Within the Requirements Coverage view you will link the test cases with the requirements. Requirements

Coverage view

within the

Overview

perspective

You will as well have an overview of the requirements coverage. This is the reason why you

will find this view within the Overview perspective.

6.4.16.1 Icons of the view tool bar

Icon Action / Comment

Shows only suspicious links in the Planning tab.

Shows all requirements, including unlinked requirements in the Planning

tab.

Updates all links in the Planning tab.

Refreshes the view in the Planning and Execution tab. With a click on the

little arrow next to the icon you can set on which selection you want to auto

refresh. You can also disable the auto refresh function (see figure 6.135).

Filters requirements in the Planning tab (component test, unit test, require-

ments without assigned test means).

Table 6.47: Tool bar icons of the Requirements Coverage view

TESSY 5.1 Manual 321

6 Reference book: Working with TESSY

Figure 6.135: Setting or disabling the options of auto refreshing

6.4.16.2 Planning tab

The current status of the links between modules, test objects, test cases and requirements

reflects the current state of your requirements coverage. This coverage can be examined on

arbitrary levels of your test project.

You can also create a report that shows the currently achieved planning coverage in the Test

Project view.

Indicators of the Planning tab

Indicator Status / Meaning

Requirements on test modul level and their linking status.

Requirements on test object level their linking status.

Requirements on test case level their linking status.

Linked requirements in total.

Task.

Table 6.48: Indicators of the Planning tab

322 TESSY 5.1 Manual

6.4 Requirement management

6.4.16.3 Execution tab

After execution of any tests, the test results are stored within test runs. The test result of a

test run covers the requirements that were linked to modules, test objects or test cases at

the time the test was executed. Therefore, the actual execution coverage result may differ

from the planning coverage result. The execution coverage view is read-only, because this

just displays the results. Any changes to requirement links need to be carried out within the

planning coverage view.

You can create a report that shows the currently achieved execution coverage.

Indicators of the Execution tab

Indicator Status / Meaning

Test cases with achieved test results for linked requirements.

Total number of test cases with achieved test results for linked require-

ments.

Passed test cases with achieved test results for linked requirements.

Failed test cases with achieved test results for linked requirements.

Table 6.49: Indicator of the Execution tab

6.4.16.4 Linking requirements with test cases

The idea behind linking requirements to modules and test objects is based on the following Linking

requirements

with test cases

process:

• First the complete list of requirements is gathered.

• Then each applicable requirement is assigned to modules that implement functionality

referenced by the requirement.

• For further break down of the assignment individual test objects are linked to the re-

quirements. This especially makes sense if the module has a large number of linked

requirements.

• At last there is a small subset of all available requirements that must be verified. To be

taken in consideration the requirement linking for a given test object must be further

broken down to test case level.

TESSY 5.1 Manual 323

6 Reference book: Working with TESSY

Important: Please note that only linked requirements of test cases will be ana-

lyzed. Unlinked requirements on test case level will not be taken in consideration.

For this process TESSY provides the Requirement Coverage view within the Overview per-

spective. It is divided into two tabs:

• The Planning tab (see section 6.4.16.2 Planning tab) is the editor for all requirement

links to modules, test objects and test cases.

• The Execution tab (see section 6.4.16.3 Execution tab) provides quick overview about

the achieved test results for linked requirements.

Important: When selecting objects on upper levels of the test project, the calcu-

lation of the test planning/execution links can take a moment.

The content that is displayed in the Planning tab or the Execution tab of the Requirement

Coverage view depends on the current selection in the Test Project view of the Overview

perspective. If not already linked with any requirement, all available requirements will be dis-

played; otherwise only the linked requirements will be displayed.

If you want to display the requirements on test cases level, you need to select the respective

test case in the Test Items view of the Overview perspective.

You can choose to display all available requirements by clicking on “Always show unlinked

requirements” in the Requirement Coverage view. Once chosen, this remains active for other

selections as well.

324 TESSY 5.1 Manual

6.5 TEE: Configuring the test environment

6.5 TEE: Configuring the test environment

The environment editor perspective provides editing of the project configuration which is

stored within the project configuration file.

Figure 6.136: TEE - The Test Environment Editor perspective

To execute a test, you need to create and configure a new module. The necessary settings,

besides the source files that you want to test, are the following: The TEE

perspective

• Include paths and defines for the source files

• The compiler of a microcontroller target and debugger, i.e. the desired test environment

• Compiler and linker options

• Debugger settings

• Other optional module settings, e.g. ASAP conversion files

This can be done within the Test Environment Editor, the TEE.

TESSY 5.1 Manual 325

6 Reference book: Working with TESSY

For a complete list of all the available attributes and possible values refer to the

application note “Environment Settings (TEE)”.

With the installation of TESSY, the configurations for all supported compiler and tar-

get environments (including necessary settings and files) were copied to the TESSY

installation directory. You need to enable the compiler and targets that you want to use

and add them to your configuration file as described in the following sections.

Their default settingsmay need to be adapted to your needs, e.g. the installation path of

the compiler or target debugger is one of the settings that normally need to be changed

to your local values. Settings which have already been used with a previous version of

TESSY were also taken over during installation.

The TEE configuration management allows you to create variants of compiler and tar-

get settings and assign them to a module. We recommend to save your settings in a

specific configuration file, which is the default when creating a new project database

(see section 6.5.6 Configuration files). This allows easy sharing of specific environ-

ment configurations between developers of the same development team.

As a result you have all your basic settings at one central place, i.e. include paths,

additional compiler options, etc. Once configured, you can start testing immediately

using the required configuration for all your modules.

6.5.1 Starting the TEE perspective

To open the TEE:

Þ In the menu bar click on “File” > “Edit Environment…” (see figure 6.137).

The TEE will start with the custom configuration file assigned to the respective project

database.

326 TESSY 5.1 Manual

6.5 TEE: Configuring the test environment

Figure 6.137: Opening the Test Environment Editor (TEE)

6.5.2 Structure of the TEE

Pane Location
(default)

Function

All

Environments

view

left Contains all available system configurations supported by

TESSY.

Project

Environments

view

left Contains the environments that are selected for the current

project and stored within the configuration file.

Attributes

view

right Shows the attribute settings for one or several selected en-

vironments within the Project Environments view.

Table 6.50: Structure of TEE

All views have filters to easily find desired elements.

The Attributes view shows the list of attributes within groups or as plain list. The groups are

defined within the system configuration file which is part of the TESSY installation.

TESSY 5.1 Manual 327

6 Reference book: Working with TESSY

The configuration file

When you have created your project database with the default settings, you will already

have a configuration file assigned to the project database. The name of this file will be

displayed within the lower left side in the status bar of TESSY (see figure 6.136).

This configuration file will be edited when opening TEE.

6.5.2.1 Icons of the tool bar

Icon Action /
Comment

Shortcut /
Key

Shows/Not shows obsolete environments.

Adds environment. Ins

Edits an attribute. Shift + F2

Removes/Resets the selected item. Del

Shows groups.

Enables Expert mode.

Shows only attributes with errors and warnings for a se-

lected environment. If the selected environment does not

have any errors or warnings, all available attributes will be

shown.

Table 6.51: Tool bar icons of the TEE

6.5.3 All Environments view

The All Environments view shows all available system environments (i.e. compiler/target

combinations) in a flat list. The environments used as project environments can be seen on

top of the list. Such environments are decorated with an activation icon.

Environments can be dragged into the Project Environments view in order to make them

usable for your TESSY project. Alternatively it is possible to use the context menu to add an

environment to the project.

328 TESSY 5.1 Manual

6.5 TEE: Configuring the test environment

Figure 6.138: The All Environments view in the TEE perspective

When selecting one of the listed environments the Attributes view will show the following

special attributes only:

• Compiler Install Path

• Target Install Path

• Embedded Workbench Path

• Compiler Version

• MICROCHIP_INSTALL_PATH

• Wind River Home Path

• NXPWorkspace Path

• NXP SystemSDK Configuration

Important: If those attributes are set, they will be stored on the local computer

and not within the configuration file of the project. Errors shown for such attributes

can be ignored if they are correctly set for the respective project environment.

TESSY 5.1 Manual 329

6 Reference book: Working with TESSY

6.5.4 Projects Environments view

The Projects Environments view shows all environments that are selected for this project. It

gets dirty when any change has been done to the configuration.

Figure 6.139: The Project Environments view in the TEE perspective

Additionally any problems with attribute values are indicated by error and warning markers.

6.5.4.1 Adding environments by UUID

You can add environments by their UUID if you have selected a suitable environment from

the compiler/targets matrix at:

https://www.razorcat.com/en/tessy-supported-compiler-debugger.html. The search result lists

the respective UUID:

Figure 6.140: Search result list with additional information

330 TESSY 5.1 Manual

https://www.razorcat.com/en/tessy-supported-compiler-debugger.html

6.5 TEE: Configuring the test environment

Beneath the actual link you will also find links to further information about the usage

and set up of environments.

To add an environment based by its UUID: Add

environment by

UUID
Þ Copy the “Environment Link” from the search result (see figure 6.140).

Þ Rightclick in the Project Environment view.

Þ Choose “Add Environment…” to open the input box (see figure 6.141).

Þ Enter the link you have copied.

Þ Click “OK”.

Figure 6.141: Add an environment

You may also use the “Add Environment…” button in the menu bar of the Project

Environment view to open the input box.

TESSY 5.1 Manual 331

6 Reference book: Working with TESSY

6.5.5 Attributes view

The Attributes view shows all attributes for a selected environment.

Figure 6.142: Attributes list within the Attributes view of the TEE

Attributes in the Attributes view are shown within groups by default. You can toggle the “Show

Groups” button to see the flat list of attributes.

Important: The “Enable Expert Mode” filter button shows or hides advanced

attributes. The expert mode is off by default.

332 TESSY 5.1 Manual

6.5 TEE: Configuring the test environment

6.5.5.1 Status indicators of the Attributes view

Indicator Status / Meaning

Item added asWindows environment variable for all processes, i.e. the

make call or the slave call, spawned using this test environment.

Item added to path variable of the execution environment.

Error.

Table 6.52: Status indicator example

TEE will display the attributes in different fonts to indicate the following situations: Different fonts

as indicators

Normal

letters

Represent factory settings respectively default

settings from paragraph “General” and have been

inherited.

Bold letters Value has been overwritten by the user.

Table 6.53: Attribute fonts

6.5.5.2 Comparing environments

When selecting two ormore environments within the Project Environments view, theAttributes

view adds individual columns for each environment and highlights any differences. The first

selected environment will be shown as first column within the Attributes view and the second

will be shown second etc.

TESSY 5.1 Manual 333

6 Reference book: Working with TESSY

Figure 6.143: Comparing environments in the Attributes view

Within the Attributes view the individual attribute values can be copied from the first to the

second column and vice versa. For this purpose the context menu provides “Copy to Left”

and “Copy to Right”.

If more than two environments are selected, only “Copy to Right” is available. This will copy

the respective attribute value from the first environment column to all other columns.

6.5.6 Configuration files

A system default configuration file contains the settings for all supported compiler and

target environments and has been installed with TESSY into the installation directory.

The configuration file assigned to the project database contains all settings that are

changed compared to the system default configuration. The contents of this file are

displayed within the project environment view.

334 TESSY 5.1 Manual

6.5 TEE: Configuring the test environment

Configuration files of the respective views will be stored in following default folders:

View Storage / File(s) / Function

All

Environ-

ments

Stored under:

• C:\Program Files\Razorcat\TESSY_5.x\config\configuration.default.xml
Contains factory settings of TESSY. This file will not be changed.

• \%APPDATA\%\Razorcat\TESSY\5.x.y\config\configuration.system.xml
Contains all your changes made in the “All Environments” view (i.e. compiler and

target path settings only) and will be stored within the user profile.

Project

Environ-

ments

Stored within the configuration file of the project:

• [PROJECTROOT]\tessy\config\configuration.xml

Table 6.54: Contents, functions and storage location of configuration files

6.5.7 Adjusting enabled configurations

Normally you need to change some settings for your specific environment. Some of the

settings will be checked for validity. TheTEEwill check all enabled configurations and displays

error and warning signs as soon as an error has been found, e.g. if the “Compiler Install Path”

must be corrected.

If you do as explained above, computer specific path settings are kept out of the configu-

ration file which you will probably share with other testers on different computers. On the

other hand your customizations made are saved in the configuration file. So this part of your

customizations will automatically be available to other testers as well.

The TEE preserves all default settings. You can revert the default values by right-

clicking the attribute to open the context menu. There you click “ Remove/Reset”.

TESSY 5.1 Manual 335

6 Reference book: Working with TESSY

6.5.7.1 Adding and editing attributes

For a complete list of all the available attributes and possible values refer to the

application note “Environment Settings (TEE)”.

To edit an attribute:Editing

attributes
Þ Select the attribute you want to edit in the Attributes view.

Þ Click “ Edit Attribute…” from the Attributes view tool bar.

The Edit Attributes Properties dialog will open.

If you want to change an attribute value only, you can double-click the re-

spective attribute and enter the desired value.

To add an attribute:Adding

attributes
Þ Click “ New Attribute…” in the Attribute view tool bar.

The Edit Attributes Properties dialog will open.

You see different attribute types available: String, Boolean, Integer, Real, File, Folder

and Url.

Þ Specify the desired type.

Important: The type can no longer be changed once the attribute is cre-

ated!

Þ Check the desired specific attribute flags. This depends on the type used.

For description see table below.

Þ Click “OK”.

336 TESSY 5.1 Manual

6.5 TEE: Configuring the test environment

Flag Description

Inheritable This flag controls the inheritance of the attribute: The attribute will be

available in all (child) section nodes. Some basic attributes are defined

at the main nodes, e.g. compiler. Each supported compiler will inherit

these basic attributes.

This flag will always be ticked by default.

Validate This flag may be important for directory or file types. The attribute value

will be validated by TEE, e.g. whether the path or file is available. An

error sign will indicate that the file or directory could not be found.

Read Only This flag makes it impossible to change a default value by using the

attribute pane of the module properties dialog.

Always Valid This flag considers the entered content as present even if the directory

or file is currently not present. It may be helpful e.g. if a path or file is

temporary by nature but needs to be provided beforehand as the value

is written or injected into a project file or execution environment.

Add to PATH

Variable

This flag is useful for attributes of type directory. Like described above

for the flag “Environment Variable”, the respective directory value will be

added to the PATH variable of the process space used for test execution

and make.

As List Using this flag, the attribute value will be handled as list of values

(comma separated). The values may be edited using a special list dia-

log. This is useful for file or directory types.

Multiline Provides a text window for multiline editing.

System Internal flag of TEE.

Hex Format This flag is useful in combination with the number type. TEE will convert

all inputs (e.g. a decimal value) to a hex value, e.g. 1 > 0x01.

continue next page

TESSY 5.1 Manual 337

6 Reference book: Working with TESSY

Flag Description

Makefile Vari-

able

Adds this variable to the generated makefile for compilation/linking of

the test driver application. You can use this variable within the makefile

for include paths or other settings required during the make process. A

variable named “My Include Path” will be added to the generated make-

file as MY_INCLUDE_PATH with the respective value.

Visible This flag makes the attribute visible in the attribute pane of the module

properties dialog (and within the test report).

Not Empty Checks whether the value is not empty. An error sign will indicate that

the attribute does not have a value.

Internal Internal flag of TEE.

Environment

Variable

This flag is useful during test execution and during the make process:

TESSY will create an environment variable within the process space of

the process that will be used for test execution (e.g. running the slave

process) and for make (e.g. building the test driver).

Important: The environment variable will only be recog-
nized byTESSY if a plus-sign is used in front of the Make

Call value.

Recource

List

This flag creates a pool of comma separated values for the respective

attibute, e.g. to launch the debugger on different ports when running in

parallel.

Table 6.55: Meanings of flags in the attribute properties

338 TESSY 5.1 Manual

6.6 THAI: TESSY Hardware Adapter Interface

6.6 THAI: TESSY Hardware Adapter Interface

In order to enable hardware I/O stimulation and measurement during unit testing, TESSY pro-

vides a hardware adapter interface allowing control of external measurement hardware. This

hardware device implements a configuration interface as well as reading and writing meth-

ods for hardware signal data. The following figure shows the architecture of the system within

the TESSY unit testing framework using a Raspberry Pi based HIL system as an example

implementation. Hardware

stimulation and

measurement

Figure 6.144: Integration of a hardware adapter (e.g. GAMMA) into the TESSY unit test
execution

An detailed description of an example implementation using a Rasperry Pi can be

found in the application note “TESSY Hardware Adapter Interface” in TESSY (“Help”

> “Documentation”)

During module analysis: TESSY reads the configuration of the hardware device in order to

determine the available interface (i.e. the available I/O signals).This list of signals (including

passing directions) will appear within the interface of theTESSYmodule (for each test object).

The signals may be edited within the Test Data Editor (TDE) as any other normal test object

variable.

During test execution: The input signals will be stimulated from the input values provided

within the TDE and the actual measurements will be saved to the respective output signals.

TESSY 5.1 Manual 339

6 Reference book: Working with TESSY

The synchronization between stimulation/measurement and the unit test execution will be

controlled by the debugger running the test object code. Therefore callback functions that

stimulate/measure the signal values will be executed before and after calling the test object.

Timing measurement may also be supported by the hardware adapter device, this will be

carried out using dedicated pins of the hardware.

6.6.1 The THAI Configuration file

The configuration file for the hardware adapter includes all necessary configuration data for

TESSY as well as the configuration data necessary for the hardware device (in XML format).

The configuration file will be specified as ”THAI Configuration File“ attribute within the Test

Environment Editor (TEE).

TESSY extracts the available hardware signals from the following XML data structure. The

required tags and attributes mandatory for TESSY are in bold.

Figure 6.145: XML data structure for the configuration THAI

There may be additional tags and attributes for the hardware device configuration, which will

be skipped by TESSY.Only the ”signals“ and the corresponding ”signal“ tags will be read and

TESSY will create the available unit test interface from these entries.

For more details about THAI including a sequenced diagram for hardware device

control and information about the interface DLL please refer to the application note

“TESSY Hardware Adapter Interface” in TESSY (“Help” > “Documentation”)

340 TESSY 5.1 Manual

6.6 THAI: TESSY Hardware Adapter Interface

6.6.2 Environment Editor (TEE) Settings for THAI functionality

The THAI functionality can be enabled using the “Enable THAI” TEE attribute. It is recom-

mended to enableTHAI for individual modules instead of enabling it for all modules of a whole

project.

The configuration of the THAI related attribute can be done within TEE but the THAI func-

tionality should be enabled for individual modules using the module properties as shown

below.

More Information about enabling the THAI functionality globally for all modules of a

project can be found in the application note “TESSY Hardware Adapter Interface” in

TESSY (“Help” > “Documentation”)

Fill the required THAI attributes:

Þ Create a new module within TESSY and go to the Properties view. The ”Enable THAI“

toggle button will be available within the Features section. Enable THAI

Figure 6.146: Enable THAI in the Properties view

• If you select the ”Enable THAI“ check box, TESSY will add the required THAI attributes

within the attributes tab.

• If you switch to ”Attributes“ within the Properties view, you will see the required THAI

attributes.

TESSY 5.1 Manual 341

6 Reference book: Working with TESSY

Figure 6.147: Required THAI attributes in the Attribute View

More Information about the configuration and functionality of THAI:

• You need to enter the THAI Configuration File attribute and select a suitable configura-

tion file for your hardware device.

• The THAI Timer File attribute is filled with a default value. You will need to change this

attribute, if you are using the timing measurement feature.

• The THAI DLL attribute references your implementation DLL of the THAI interface.

• The Log Level attributes are optional.

• The THAI Timer File attribute is optional and can be left empty.

Attribute Description

THAI Configuration

File

This references the configuration file for your

hardware device including the available hardware

interface description for TESSY.

THAI DLL References your implementation DLL of the THAI

functionality.

THAI Log File The output file for logging.

THAI Log Level Value from 0 (no logging) to 2 (full logging). The

actual log content depends on the implementation

of the DLL.

continue next page

342 TESSY 5.1 Manual

6.6 THAI: TESSY Hardware Adapter Interface

Attribute Description

THAI Timer File References a C source file with an implementation

of the ts_start_timer() and ts_stop_timer()

functions. The default implementation contains

empty functions which can be found within file

$(TESSY_SYS)\src\comm\ts_timer.c. These
functions shall toggle a specific hardware pin for

timing measurements.

Table 6.56: THAI attributes and their descriptions

6.6.3 Signals within the interface

When THAI is enabled for a specific module, you will see the available hardware signals as Available

hardware

signals within

the interface

inputs and/or outputs according to the contents of the THAI configuration file.

Figure 6.148: Required THAI attributes in the TIE

TESSY 5.1 Manual 343

6 Reference book: Working with TESSY

You can change the passing directions to IRRELEVANT in the Test Interface Editor (TIE) if

certain signals are not necessary for the given module. (More information about the TIE is

provided in chapter 6.7 TIE: Preparing the test interface.)

6.6.4 Entering test data for signals

The hardware signals defined within the THAI configuration file will appear within the Test

Data Editor (TDE) as normal inputs and/or outputs. You need to assign values for each testAssign concrete

values for each

test step

step as with normal variables of the test object interface. (More information about the TDE is

provided in chapter 6.9 TDE: Entering test data.)

Important: You must not use special values like *none* for the hardware signals

defined within the THAI configuration file in the TDE. For each signal input and

output a concrete value is required.

Figure 6.149: Required THAI attributes in the TDE

When evaluating hardware signals it is recommended to specify ranges or values with de-

viations (e.g. 20 + / - 1%) due to the possible signal measurement deviations cause by the

hardware.

344 TESSY 5.1 Manual

6.7 TIE: Preparing the test interface

6.7 TIE: Preparing the test interface

Figure 6.150: Perspective TIE - Test Interface Editor

Within the TIE you determine which values are input and which ones are output variables.

Input values are all interface elements that have to be set before execution of a test object.

Output values are compared with the expected values after test execution.

After configuring the test environment of a module and opening themodule the analysis

of the respective source files starts. The functions found within the source files will be

available as test objects, TESSY will try to assign useful default passing directions

automatically.

You need to specify missing information that TESSY could not determine automatically,

i.e. array dimensions or values of enumeration constants. This can happen due to the

usage of the “sizeof” operator when declaring arrays or enumeration constants.

TESSY 5.1 Manual 345

6 Reference book: Working with TESSY

6.7.1 Structure of the TIE perspective

Pane Location
(default)

Function

Test Project view upper left Same view as within the Overview perspective.

Properties view lower left Same view as within the Overview perspective.

Interface view upper right To display all interface elements of the test object and

to provide the edit fields to enter passing directions of

variables as well as additional information.

Plot Definitions

view

right To create and configure plots (same view as within the

TDE perspective).

Table 6.57: Structure of TIE

6.7.2 Test Project view

The Test Project view displays your test project which you organized within the Overview6.2.3 Test
Project view

perspective.

Important: We recommend to do any changes of the test project structure within

theTest Project view of theOverview perspective. The view layout of this perspective

is optimized for this purpose!

6.7.3 Properties view

The Properties view is context sensitive: You can view the passing direction of a variable (e.g.Passing

directions of a

variable

IN, OUT, IRRELEVANT) if you select the variable within the Interface view. Then the Proper-

ties view will display the passing direction and the type information (see figure 6.151).

346 TESSY 5.1 Manual

6.7 TIE: Preparing the test interface

Figure 6.151: Information of passing direction and type

6.7.4 Interface view

Figure 6.152: Interface view

TESSY 5.1 Manual 347

6 Reference book: Working with TESSY

6.7.4.1 Icons of the view tool bar

Icon Action / Comment

Highlights the next undefined value.

Highlights the previous undefined value.

Creates a new variable.

Shows only stubbed functions and defined variables.

Table 6.58: Icons of the Interface view

6.7.4.2 View icons

Icon Meaning

External functions

Local functions

External variables

Global Variables

Parameter

Return

Unused

Table 6.59: View icons of the Interface view

6.7.4.3 Status indicators

Indicator Status

Function (not stubbed) / Undefined external variable

continue next page

348 TESSY 5.1 Manual

6.7 TIE: Preparing the test interface

Indicator Status

Stubbed function / Defined external variable

Function with advanced stub function

Function with global stub function

Table 6.60: Status indicators of the Interface view

6.7.4.4 Handling

You can browse through the interface items of the currently selected test object. An arrow in

front indicates further levels (see figure 6.153).

Figure 6.153: White arrow indicating further levels, black arrow when expanded

6.7.4.5 Interface elements

The variables are either read within the function (IN), written within the function (OUT), both Interface

elementsread and written (INOUT), to be altered by usercode (EXTERN), or they are simply not used

within the function (IRRELEVANT).

TESSY 5.1 Manual 349

6 Reference book: Working with TESSY

The TIE classifies all recognized interface elements of the test object into the following sec-
tions:

External Functions All functions which are not defined within the source file(s) of the

module. These functions are called from the test object.

Local Functions All functions defined within the source file(s). These functions

are called from the test object.

External Variables External declared variables which are not defined within the

source file(s).

Global Variables Global variables and module local static variables which are

defined within the source file(s).

Parameter Parameter of the test object.

Return Return value of the test object.

Unused Contains all sections and the related interface elements which

are not used in the current test object.

Table 6.61: Classification sections of interface elements

6.7.4.6 Setting passing directions

The passing direction reflects the kind of usage for each variable while testing the test

object. You can specify how TESSY treats a value for an interface variable either to

provide the value before test execution (IN) or to keep the value for evaluation and

reporting after test execution (OUT).

To set the passing directions:Setting passing

directions
Þ Click in the relevant cell of the element in the column “Passing”.

A drop-down menu will be displayed with the available options IN, OUT, INOUT and

IRRELEVANT.

Þ Select a suitable passing direction.

350 TESSY 5.1 Manual

6.7 TIE: Preparing the test interface

You have to specify one of the following passing directions for each interface element:

• provide an input value for that interface element, because the element is only read by

the test object (IN),

• evaluate and report the results of that interface element, because the element is only

written by the test object (OUT),

• both provide a value and evaluate the result, because the interface element is both read

and written by the test object (INOUT),

• provide a value within the UCE (Usercode Editor) of TESSY (EXTERN) .With this set-

ting, the interface element is visible in the scope of the user code and may be set using

C code,

• not use the interface element at all (IRRELEVANT). In this case, you will not see this

variable for all further testing activities.

The following table shows possible passing directions of the different types of interface ele-
ments:

Direction:
Element:

IN OUT INOUT EXTERN IRRELEVANT

External variable x x x x x

Global variable x x x x x

Parameter x x x

Return x x

Table 6.62: Possible passing directions of the interface elements

Automatic analysis of the passing directions

During processing when opening the module, TESSY analyzes the passing directions au-

tomatically and stores its findings in the interface database. This information is available in

the TIE as default values of the passing directions. TESSY analyzes the usage of individual

interface elements by the test object.

Warning: AlthoughTESSY usually correctly recognizes all interface settings, open

the TIE for every test object and make sure that the values are set correctly or do

match your needs!

TESSY 5.1 Manual 351

6 Reference book: Working with TESSY

Depending on that usage, the following passing directions will be set as default:

Read only IN

Write only OUT

Read and write INOUT

Not used IRRELEVANT

Table 6.63: Default passing directions

In case that the passing directions or any other interface information could not be determined

the respective fields in theTIE will bemarked “UNKNOWN”or “?”. If TESSY could not calculate

the size of an array dimension enum value (indicated with a question mark), you have to set

them manually.

Reset passing direction to default

TESSY analyzes the usage of individual interface elements by the test object. Change the

passing direction of an interface element to suite your needs.

Reset the passing direction for all interface elements of one section:

Þ Select the respective section and click “Reset to Default Passing” from the context menu

(see figure 6.154).

352 TESSY 5.1 Manual

6.7 TIE: Preparing the test interface

Figure 6.154: Resetting passing directions

Reset the passing direction only for an individual interface element:

Þ Select the respective interface element and click “Reset to Default Passing” from the

context menu.

6.7.4.7 Setting the data format

You can change the data format: Setting the data

format
Þ In the row “Data Format” click into the cell to open the pull-down menu.

Þ Click on a format to change it either to “Decimal”, “Hexadecimal” or “Binary” (see figure

6.155).

TESSY 5.1 Manual 353

6 Reference book: Working with TESSY

Figure 6.155: Setting the data format

Important: If you change the data format, all newly entered values within the Test

Data view of the TDE will be formatted into the new format. Existing data will not be

formatted!

6.7.4.8 Setting passing direction of special data types

Pointers and complex data types will be treated slightly different as normal data types.

Pointers

Interface elements of pointer type have two passing directions:

Both the passing direction of the pointer itself and the passing direction of the target to whichPointers

it points have to be specified.

The passing direction of the pointer and the target can be set independently, but they are

checked or corrected by TIE to ensure valid combinations.

Complex data types

Complex data types as “Structure” and “Union” have a dependency between their passing

direction of the overall structure/union and the passing directions of their components.

354 TESSY 5.1 Manual

6.7 TIE: Preparing the test interface

To avoid invalid combinations the TIE checks the setting of passing directions for these data

types in the following manner:

• When the passing direction of one component is set, TIE determines the resulting pass-

ing direction for the overall structure/union and set them automatically.

• When the passing direction for the overall structure is set, all components are automat-

ically set to the same passing direction.

Arrays

The passing direction of the data type “Array” will be set for the entire array to the same

direction. Only one passing direction will be defined for the whole array and all elements. If

the array is made up of structured array elements (e.g. structures), it is possible to define Arrays

different passing directions for the components of these structures.

Array as parameters will be shown as pointers within the interface. They can be initialized

with NULL or pointing to a dynamic object, synthetic variable or global variable (see figure

6.156).

Figure 6.156: Array as pointer

TESSY 5.1 Manual 355

6 Reference book: Working with TESSY

6.7.4.9 Defining stubs for functions

The TIE displays all functions used by the test object either in section External Functions or

Local Functions and it provides an interface to define stubs for these functions that will be

executed instead of the original function. TIE distinct two different stub functions:

• A stub function for which you can enter C code.

• An advanced stub function that allows to provide values for parameters and return

values of stub functions like normal variables in the TDE.

You can define stubs globally for all test objects of the module or create a stub inde-

pendently of the global module setting.

The following restrictions apply to advanced stubs:

• Advanced stub variables cannot be created for arrays and pointer to arrays.

• Pointers that are components of structs or unions will always be handled as IRRELE-

VANT.

• Multiple calls to advanced stubs will generally use the same input values and the results

of the last call will be taken as output values.

• If different values shall be used for multiple calls to advanced stubs, vector values need

to be utilized.

For more information about entering values (defines, enums, arithmetic expressions,

input values, vector values) please refer to subsection Entering values.

Important: Stub functions returning a value should be implemented with stub

code that returns a defined value. If no stub code is provided for such non-void

functions, a random value will be returned which depends on the current memory

layout and stack contents. Therefore TESSY aborts the test driver generation in

such a case with an error. You can select to ignore this error within the test execution

preference pages if you are sure that the return values of your stub functions are

not used. (For more information see Executing tests.)

356 TESSY 5.1 Manual

6.7 TIE: Preparing the test interface

Warning: Due to the possibility of unforeseen side effects, please refrain from

stubbing standard or system functions of your chosen compiler.

For example: A stub of “memcpy()” in a GCC configuration may provoke an access

violation error or stubbing “__ARM_disabl_irq” within Keil ARM will fail the build

process entirely with an error message that the IDE installation may be damaged.

To create a stub: Creating a stub

function
Þ Right-click the function and choose “Create Stub” from the context menu (see figure

6.157).

Figure 6.157: Create a stub function within the context menu

You can create stubs either for external or local functions which will be executed instead of

the original functions.

There are several options available:

• Create stubs for all functions at once for all test objects of the module (global setting).

• Create stubs for a single function for all test objects of the module (global setting).

• Create stubs for the current test object.

• Use global stub settings.

The enhancement to normal stub functions are advanced stub functions, that allow to provide

values for parameters and return values of stub functions like normal variables.

TESSY 5.1 Manual 357

6 Reference book: Working with TESSY

TESSY checks if the stub is called by the test object with the specified parameter values,

otherwise the test fails. You can also provide a return value for further processing by the test

object. This reveals if the test object handles the return values of the stub function correctly.

To create an advanced stub:Creating an

advanced stub

function
Þ Right-click the function and choose “Create Advanced Stub” from the context menu.

You can create advanced stubs either for external or local functions.

There are several options available:

• Create advanced stubs for all functions at once for all test objects of the module (global

setting).

• Create advanced stubs for the current test object.

• Use global stub settings.

6.7.4.10 Other interface settings

For test execution the information on data types of the test object interface has to be com-

plete. The dimensions for arrays, the values of the enumeration constants for enumerations,

and the dimensions for bitfields have to be defined. If these values have been automati-

cally recognized by TESSY while opening the module, the respective text field will show the

calculated value for every data type. In this case, it is not possible to change these values.

If a value for an interface element has not been recognized automatically, the respective text

field will be empty or contain the value -1. In case of arrays TIE will also use question marks

to indicate this issue, i.e. array[?]. In all those cases you have to add values manually.

Warning: Wrong array dimensions or wrong values for enumeration constants can

cause the test object to crash during test execution! TIE cannot check for plausibility

of used values!

358 TESSY 5.1 Manual

6.7 TIE: Preparing the test interface

6.7.4.11 Creating new variables

You can create new (synthetic) variables for usage within your test cases based on all basic

C/C++ types as well as based on all types available within your source files.

Important: Restrictions apply for synthetic variables using types that are defined

within the source file only (and not within a header file): Such synthetic variables

cannot be used within stub code for local functions or within fault injection code.

If synthetic variables with source file defined types shall be used (e.g. within prolog

epilog) and either stubbing of local functions or fault injections are active, you may

need to set the module attribute “Synthetic Declarations In Source” to false in order

to prevent a compilation error.

To create a new variable:

Þ click on the icon (New Variable).

Important: Creating enum variables is only possible for enum types with either a

tag name or which were defined using a typedef.

TESSY 5.1 Manual 359

6 Reference book: Working with TESSY

Figure 6.158: Create a new variable

360 TESSY 5.1 Manual

6.7 TIE: Preparing the test interface

Within the New Variable dialog:

Þ Specify the name of the variable.

Þ Select a type and whether it shall be a pointer or an array.

Þ Click “OK”.

The new variable will be shown within the TIE view with the default passing direction “INOUT”.

Adjust the passing direction to your needs.

Important: Variables created for one test object are global and therefore available

for all test objects. This of course means that deleting a (synthetic) variable has

global consequences too. The variable will be deleted in every test object where it

is in use.

Synthetic variables in other test objects are by default listed in the ”Unused” section

of the interface. They can be moved to “Used Variables” manually if necessary.

6.7.4.12 Using alias names

TESSY provides an alias namemechanism tomirror the usage of #define to access variables

during the whole testing cycle (e.g. access to individual bits of common bitfield structures).

You will see your variables within TESSY named exactly as the defines you are using in your

code to access these variables.

Figure 6.159: Example code snippet for alias names

TESSY 5.1 Manual 361

6 Reference book: Working with TESSY

To activate the usage of alias names:

Þ Change the value of the TEE attribute “Use Alias Names” to “true” (Refer to chapter

6.5.7.1).

Figure 6.160: Show alias names preferences

Þ Check the “Show Alias Names” preferences button.

Instead of the real variable name “door_light_c.b.b0” that you are not using within your code,

you will now see the virtual name “door_light_left_b” given through the define within the

TESSY interface and within the test reports.

6.7.4.13 Defining external variables

External variables are listed in the interface of the TIE and can be handled like any other

variable. You can set e.g. the passing direction, the data format or add descriptions.

External variables are by default defined. This is indicated by an .

362 TESSY 5.1 Manual

6.7 TIE: Preparing the test interface

Figure 6.161: Defined external variables

To undefine an external variable:

Þ Right-click the respective variable to open the context menu (see figure 6.162).

Þ In the context menu click “Don’t define Variable”

Undefining

external

variables

Figure 6.162: Undefining an external variable

The now undefined external variable appears with an (see figure 6.163).

TESSY 5.1 Manual 363

6 Reference book: Working with TESSY

Figure 6.163: Undefined external variable

6.7.4.14 Changing the default settings in the Test Environment Editor (TEE)

The default behavior for external variables or external functions is as follows:

• External variables will be defined.

• External functions will not be stubbed.

If you want to change e.g. the default settings of the external variables or functions for your

project, you should change it within the related configuration files.

To open the TEE:Edit default

settings in the

TEE
Þ Click “File” in the menu bar.

Þ Then click “Edit environment…” .

The Test Environment Editor will open as a new perspective.

Þ You can now change the default settings to create the desired behavior.

To edit the default settings of the external variables:

Þ Set “Enable Define Variables” to “false” in the Attributes view of the TEE perspective

with a doubleclick (see figure 6.164).

Þ You will be asked to save or discard your settings when leaving the TEE perspective.

Saved changes will be active with the first opening or after a reset of the module. The

interface of existing modules will not be changed.

364 TESSY 5.1 Manual

6.7 TIE: Preparing the test interface

Figure 6.164: Change external variable/function settings in the TEE

To edit the default settings of the external functions:

Þ Set “Enable Create Function Stubs” to “true” in theTEEAttributes view with a doubleclick

(see figure 6.164).

Þ Save your settings when leaving the TEE perspective.

Changes will be active with the first opening or after a reset of the module. The interface

of existing modules will not be changed.

For more information about the TEE please refer to chapter 6.5 TEE: Configuring the

test environment

You can also find more information about available attributes and their settings in

the application note “Environment Settings (TEE)” in TESSY (“Help” > “Documenta-

tion…”)

TESSY 5.1 Manual 365

6 Reference book: Working with TESSY

6.7.4.15 Handling unused functions or variables

The list of unused functions and variables shows all external items that are used by other

test objects of the same module but not by the current test object itself. Because such items

need to be defined in order to link the test driver, you need to review this section to check

whether all external references have been defined or stubbed.

Please note: System functions or intrinsic functions must not be stubbed. For more

information please refer to chapter 6.7.4.9 Defining stubs for functions

Local functions are available in this list to be able to move them to the used functions of a test

object. Creating a stub for a local unused function does not usually make sense, because

the local function is not called from test object.

One possible use case could be the usage of such local functions as a value of a function

pointer. Via stub code it is possible to influence the behavior of the function.

Depending on the type of function or variable it is possible to stub the function or not define

the variable. You can also copy the name or move the function or variable to used functions

or variables.

To handle unused functions or variables:

Þ Right-click on the respective function or variable to open the context menu.

Þ Choose your desired option (see figure 6.165).

366 TESSY 5.1 Manual

6.7 TIE: Preparing the test interface

Figure 6.165: List of unused functions and variables in the TIE interface

TESSY 5.1 Manual 367

6 Reference book: Working with TESSY

6.7.5 Plot Definitions view

You can find more information about plot definition in chapter 6.9.14 Plots view.

Figure 6.166: Plot Definitions view

The Plot Definitions view displays the plots for a selected test object or test run.

Within the view you can create or configure plots for a selected test object. You can also

select whether plots should be used in reports.

6.7.5.1 Icons of the view tool bar

Icon Action /
Comment

Shortcut /
Key

Creates a new plot with no variables. Ins

Deletes the selected plot respectively removes the selected

variable from its plot.

Del

Expands the tree.

Collapses the tree.

Table 6.64: Icons of the Plot Definitions view

368 TESSY 5.1 Manual

6.7 TIE: Preparing the test interface

6.7.5.2 Creating plots

TESSY can handle different kind of plots:

A test case plot spans over all values of all test cases of the selected variables.

A test step plot provides one curve for each test case spanning over all values of the

test steps of this test case. This requires at least two test steps for each test case to

define a valid curve.

An array plot creates plots for array type variables. There will be one curve spanning

over the array values for each test step.

To create a plot:

Þ Click on to create a new plot.

Þ Right-click on the newly created plot to rename it or set the included test items (see

figure 6.167).

Figure 6.167: Rename a new plot

Þ Click on the newly created plot to choose the desired kind of plot (see figure 6.168).

TESSY 5.1 Manual 369

6 Reference book: Working with TESSY

Figure 6.168: Plot Definitions menu

It is possible to drag variables from the TIE or the TDE onto the Plot Definitions view. Also

plots and variables can be dragged and dropped within the Plot Definitions view (see figure

6.169).

To add variables to the plot:Adding

variables to plot
Þ Drag and drop the variables to the Plot Definitions view.

Figure 6.169: Adding variables to a plot in the TDE

370 TESSY 5.1 Manual

6.7 TIE: Preparing the test interface

The table below shows the different possibilities:

Source Drag onto Result

Scalar or array

variable from TIE or

TDE

Empty area

Plot

A new plot containing the variable is created.

The variable is added to the plot if possi-

ble. (1)

Variable from Plot

Definitions view

Empty area

Another plot

The variable is moved to a new plot. (2)

The variable is moved to the other plot.

(1, 2)

Plot from Plot

Definitions view

Empty area A copy of the plot is created. (3)

Table 6.65: Drag and drop handling with the Plots and Plot Definitions view

(1) Restrictions apply: A scalar variable cannot be added to an array plot, and whole arrays

cannot be added to a test case or test step plot (whereas single array elements can be added

to test case or test step plots).

(2) If CTRL is being pressed while dropping the variable, it will be copied instead of moved

to the other plot.

(3) Only applies if CTRL is being pressed while dropping the plot.

TESSY 5.1 Manual 371

6 Reference book: Working with TESSY

6.7.5.3 Reporting plots

Only the plots that are ticked with “Use in Report” will be displayed within the reports (see

figure 6.170).

Figure 6.170: Using plots in report

372 TESSY 5.1 Manual

6.8 CTE: Designing the test cases

6.8 CTE: Designing the test cases

Figure 6.171: CTE perspective

6.8.1 The basic idea

After preparing a test in theTIE, you need to create well designed test case specifications. The

Classification Tree Method provides a systematical approach to create test case definitions
3.2 The

Classification Tree
Method (CTM)

based on the functional specification of the function or system to be tested. TESSY includes

the specialized Classification Tree Editor CTE which assists you in creating low redundant

and error sensitive test cases.

The basic concept of the Classification Tree Method is to first partition the set of possible

inputs for the test object separately and from different aspects, and then to combine them to

obtain redundancy-free test cases covering the complete input domain.

For further general information about the Classification Tree Method (CTM) please

refer to chapter 3.2 The Classification Tree Method (CTM).

Þ Switch to the CTE perspective to start the CTE in TESSY.

TESSY 5.1 Manual 373

6 Reference book: Working with TESSY

6.8.2 Structure of the CTE perspective

Pane Location
(default)

Function

Test Project view upper left Displays your test project. For editing your test project

switch to the Overview perspective.

Properties view lower left Displays the properties of tree and Test Table items.

Outline view lower left Displays the structure of the classification tree and the

Test Table and allows to navigate and select items in

the structure.

Statistics view lower left Shows some basic information of the document in the

currently active CTE.

Classification

Tree editor

upper

center

To edit the classification tree.

Validation

Issues view

lower

center

Shows a list of all validation issues of the currently ac-

tive CTE.

Test Data view right Allows to assign test data to classification tree ele-

ments.

Table 6.66: Structure of the CTE perspective

6.8.3 Test Project view

TheTest Project view displays the test project which has been organized within the Overview6.2.3 Test
Project view

perspective.

Important: We recommend to do any changes of the test project structure within

theTest Project view of theOverview perspective. The view layout of this perspective

is optimized for exactly this purpose.

374 TESSY 5.1 Manual

6.8 CTE: Designing the test cases

6.8.4 Properties view

The Properties view displays all the properties which you have organized within the Overview

perspective. Within the CTE perspective this view additionally provides all properties of items

used in the classification tree and the Test Table. Most operations are possible. 6.2.4 Properties
view

For changing any module related settings switch to the Properties view within the Overview

perspective.

6.8.5 Outline view

The Outline view displays the structure of the classification tree and the Test Table and allows

navigating and selecting items in the structure.

6.8.6 Classification Tree editor

Figure 6.172: Classification Tree editor related tool bar

TESSY 5.1 Manual 375

6 Reference book: Working with TESSY

Figure 6.173: Classification Tree editor

Maximize the CTE window within the Classification Tree editor to avoid additional

scroll bars and to always show the whole CTE window contents within the perspec-

tive.

6.8.6.1 CTE related Icons of the main tool bar

Icon Action /
Comment

Shortcut /
Key

Saves the current contents. Ctrl + S

Cuts the selection. Ctrl + X

Copies the selection. Ctrl + C

Paste Ctrl + V

Delete Del

Undoes the last move or edit operation within the classifica-

tion tree pane.

Ctrl + Z

continue next page

376 TESSY 5.1 Manual

6.8 CTE: Designing the test cases

Icon Action /
Comment

Shortcut /
Key

Redoes the last move or edit operation within the classifica-

tion tree pane.

Ctrl + Y

Lays out the tree.

Aligns two or more selected graphical elements to the left.

Aligns two or more selected graphical elements in the cen-

ter.

Aligns two or more selected graphical elements to the right.

Aligns two or more selected graphical elements on the top.

Aligns two or more selected graphical elements in the mid-

dle.

Aligns two or more selected graphical elements on the bot-

tom.

Opens the parent level editor of a view editor. Ctrl + up

Selects all leaves that are children of the current selection. Ctrl + L

Hides the dependencies in the tree and disables the depen-

dency entries in the palette.

Zooms in. Ctrl + mouse

wheel

Zooms out. Ctrl + mouse

wheel

Table 6.67: Tool bar icons of the Classification Tree view

See figure 6.172 to localize the CTE related tool bar.

TESSY 5.1 Manual 377

6 Reference book: Working with TESSY

6.8.6.2 Structure of the Classification Tree editor

Pane Location
(default)

Function

Tree area upper left Drawing the classification tree with a root, compositions,

classifications and classes.

Test Table lower left Marking classes of the classification tree in order to define

test cases, test sequences and test steps. Every test item

creates a new line in the Test Table.

Palette right Tool box to create tree items and define parents as well

as create and define dependencies.

Table 6.68: Structure of Classification Tree view

6.8.6.3 Palette view

The Palette view on the right side of the CTE contains a tool box to select and create tree

items and define the parent structure. Furthermore the palette provides tool entries to defineCreating tree

items and define

the parent

structure and

dependencies

different types of dependencies for tree items. Icons of the Palette view

Icon Action / Comment

Selects elements in the Classification Tree.

Creates a composition.

Creates a classification.

Creates a class.

Creates a comment.

Defines the parent for tree items.

Creates an AND dependency.

Creates an OR dependency.

Creates an XOR dependency.

continue next page

378 TESSY 5.1 Manual

6.8 CTE: Designing the test cases

Icon Action / Comment

Creates a NEGATION dependency.

Defines a relation between the dependencies or classes.

Table 6.69: Icons of the Palette view

6.8.6.4 Creating classifications, classes and test cases

A test case is formed through the combination of classes from different classifications. For

each test case exactly one class of each classification is considered. The combined classes

must be logical compatible; otherwise the test case is not executable. You should choose and

combine as many test cases as needed to cover all aspects that should be tested.

The method offers a graphical representation of the recursive partitioning of classifications

and classes in shape of a classification tree. The classifications are drawn as named rectan-

gles. The respective classes are arranged below. To specify the test cases as combination of

classes the classification tree is used as the head of a combination table wherein the classes,

which are to be combined, are marked.

For further general information about the Classification Tree Method (CTM) please

refer to chapter 3.2 The Classification Tree Method (CTM).

To create classifications: Creating

classifications
Þ Select the root tree item.

Þ Right-click to open the context menu.

Þ Choose “ Add Classification ” , see figure 6.174 general information about the Clas-

sification Tree Method

You can also press Insert on the keyboard to create a classification in the CTE.

TESSY 5.1 Manual 379

6 Reference book: Working with TESSY

Figure 6.174: Creating a new classification with the context menu

To edit the classification:

Þ Double-click the new classification or press F2 after selecting the new classification to

start the inline editor for the tree item.

Within the tree area you can move the classifications and other elements with drag

and drop: Just left click the element, hold the mouse button andmove it to the desired

place. You may also select a group of elements and move them the same way. The

tree layout will be arranged automatically by clicking in the tool bar.

380 TESSY 5.1 Manual

6.8 CTE: Designing the test cases

To create classes: Creating

classes
Þ Select a classification as parent.

Þ Right-click to open the context menu.

Þ Choose “ Add Class ” .

You can assign test data to all interface variables for each tree node of the classifica-

tion tree. This speeds up testing because the test data will be assigned automatically

to the test cases via the marked class nodes (refer to section 6.8.7 Test Data view).

To create test cases: Creating test

cases
Þ Select the Test Table on the lower left.

Þ Create the test cases either using the context menu (“ Create Test Case ” , see

figure 6.175) or press Insert on the keyboard.

TESSY 5.1 Manual 381

6 Reference book: Working with TESSY

Figure 6.175: Creating test cases in the test item list

382 TESSY 5.1 Manual

6.8 CTE: Designing the test cases

Test cases are defined by setting marks in the Test Table: Setting marks

Þ Click on one of the circles to connect a test case with a class. The empty circle will turn

into a black circle.

Þ Click on to save the classification tree.

Figure 6.176: Setting marks in the Test Table

If you connect a test case with a class, the respective test data assignments of the

class will be assigned to the test case. If you want to review the resulting test data

assignments for the whole test case, select the test case within the test item list. The

Test Data view will now display the assignments for the test case.

The test data of a test case is displayed read-only because it is defined by the marks

set within the combination table and cannot be changed here.

TESSY 5.1 Manual 383

6 Reference book: Working with TESSY

Figure 6.177: Classification Tree with test data for class “Zero”

Notice the following habits:

• All tree items with assigned test data are marked with a yellow square (), when not

selected.

• When selecting a tree item, you will see the test data entered for this item within the Test

Data view.

• When selecting any interface element within the Test Data view, all classification tree

elements that contain test data for this interface element will be marked with a blue square

().

Þ Switch to the TDE perspective.

384 TESSY 5.1 Manual

6.8 CTE: Designing the test cases

Figure 6.178: Test cases and test steps created within the CTE in the Test Item view of the
Overview perspective

Please notice the following habits:

• Test items with values stemming from the CTE perspective are marked with special status

indicators: (test case) and (test step).

• Indicators will appear light gray when there are no values entered, dark gray when some

values are entered and yellow when the entering of values is completed.

• Values stemming from the CTE are read-only. If you want to change them, switch back to

the CTE perspective and do your changes there.

• Test cases created in the Test Item view do not appear in the CTE.

TESSY 5.1 Manual 385

6 Reference book: Working with TESSY

6.8.6.5 Update generated tree based on interface changes

This feature can be activated in the “Preferences” > “CTE” > “Tree Generation” > “Update

generated tree based on interface changes”. The CTE document will then be updated with

interface elements not present in the actual tree.

Figure 6.179: Settings in the CTE preferences

With this feature active and TESSY detecting at least one interface element which is not

attached to any CTE node, TESSY will ask whether it shall merge a new generated tree with

the current tree.

386 TESSY 5.1 Manual

6.8 CTE: Designing the test cases

Figure 6.180: Interface changed dialog

In this dialog click “OK” if you want to continue. If you want to remove subtrees associated

with deleted interface elements, check the mark in the dialog.

“Delete subtrees assiciated with deleted interface elements” is enabled by default.

Important: The algorithm merges the changes in the current CTE document and

detects already known and handled interface elements. This detection is based on

a two phase approach. First, the algorithm searches whether the interface element

is already associated with a CTE node. If this is not the case, it searches whether

a CTE node for the interface element is already at the expected position in the tree.

6.8.6.6 Automated tree generation based on function interface

Based on information provided by the test object interface as well as the interface dictionary

and the configuration in the TIE it is possible to generate a classification tree. (More informa-

tion about the interface dictionary is provided in subsection 6.1.6 Interface dictionary.)

The tree always contains an “Inputs” and “Outputs” subtree and when available nodes for

parameter, globals, return value, parameter and return values of called functions.

The interface information defined in the TIE is used to generate subtrees based on the differ-

ent types of the interface items such as enums, arrays, scalars, pointers.

Please refer to the overview in figure 6.181, the blue marked boxes contain descriptions of

the generated nodes in the respective position.

TESSY 5.1 Manual 387

6 Reference book: Working with TESSY

Figure 6.181: An overview on the automated tree generation based on the function interface

To generate a classification tree:

Þ Open the CTE perspective.

Þ Select a test object.

In general there is no saved CTE file, therefore a new classification tree will be generated

automatically and the CTE will be instantly created.

Figure 6.182: Automatically generated for the example is_value_in_range

388 TESSY 5.1 Manual

6.8 CTE: Designing the test cases

The editor of the resulting tree is marked with an asterisk to show unsaved content. It is

possible to modify the content to your specific needs and changes can finally be saved. To

check whether a CTE file was already saved:

Þ Select a test object.

Þ Select the Properties view > Attributes.

Figure 6.183: The CTEX file attribute

This CTEX file attribute only exists when a CTE was saved.

Important: By removing the CTEX file from the attributes list the respective clas-

sification tree will be voided, but associated data will remain on the hard disk.

To be able to create a new tree it is necessary to discard a generated and already saved tree.

Therefore you need to remove the test specification:

Þ Right-click on the test object.

Þ In the pull down menu click “Remove Test Specification” (see figure 6.184).

TESSY 5.1 Manual 389

6 Reference book: Working with TESSY

Figure 6.184: Remove Test Specification

The automatic tree generation in TESSY is enabled by default. You can disable it in the

Preferences menu.

390 TESSY 5.1 Manual

6.8 CTE: Designing the test cases

Figure 6.185: The CTE Preferences

Just untick “Create initial tree based on interface”.

Type specific tree generation configurations are also provided. Via “Max number of enum

constants” you can define for how many enum constants tree nodes should be generated.

This is useful for enums with many constants.

Important: Make sure that “Show synthetic variables” is ticked in order that syn-

thetic variables will be shown and considered in newly generated trees.

This checkbox is checked by default.

TESSY 5.1 Manual 391

6 Reference book: Working with TESSY

6.8.6.7 Automated conversion from class node name to test data

It occurs that in Classification Trees the name of leaf classes create a clear intention for the

test data attached to them. As a test engineer you are then confronted with the error prone

and tedious job to attach the right test data to such nodes.

The automated conversion of test data is about CTE classes like the children below the

classification “Variable range_start” in the following image (see 6.186). The names of the

classes can be associated uniquely with test data for the parameter “range_start”.

To associate test data manually you have to first select each class, in this case “*min*”, “-1”,

“0”, “1” and “*max*”. You need to find the parameter “range_start” in the Test Data view on the

right and add the corresponding value to each class separately.

Figure 6.186: CTE class node with children associated with test data

TESSY enables you to create this test data automatically, it just needs to be informed which

interface element in the Test Data view is associated with the corresponding CTE classifica-

tion in the tree area. This association is done by “Attach to CTE Node”.

If your initial classification tree is generated by TESSY, the interface will be attached to the

corresponding nodes automatically and TESSY will automatically parse the test data of leaf

classes of this classification from the class’ name.

Please keep in mind: This automated conversion can also be deactivated (see be-

low).

392 TESSY 5.1 Manual

6.8 CTE: Designing the test cases

If your tree is created manually, you can associate an interface object manually.

Þ Select the node to be attached in the CTE.

Þ In the Test Data view on the right select the interface element you want to attach to the

selected node.

Þ In the context menu click “Attach to CTE Node” to associate the interface object with the

selected node in the active CTE (see figure 6.187).

Figure 6.187: Attach the selected interface object

The Test Data value will be derived from the class node’s name. All values and expressions

that can be entered within TDE for the respective interface object can be used as class name

as well.

TESSY 5.1 Manual 393

6 Reference book: Working with TESSY

For more information about entering values and expressions refer to section 6.9.7.4

Entering values.

In particular it is possible to use special values, such as:

”*min*(-100)”, ”*max* (-100)”, ”*max-1*”, ”*none*”, ”89 // This is a special Value”, ”/* another com-

ment */”, ”A_DEFINE”

Important: For performance reasons this derivation is only done when classifica-

tion trees are saved.

Pointers must have set a dynamic object as their targets in order that TESSY will create test

data. For other targets TESSY will assume that the test data is derived from other parts of

the classification tree.

For array elements the index is determined from the last line of the nodes’ names which are

associated with the array element type. I.e. the last line of such a node must match the

regular expression: .*("["[0-9]+"]")+

Examples for arrays are:

• array_1[3]

• array_2[5][17]

The derivation of the index from the name has the advantage that changes of the name will

be recognized by TESSY.

Important: Be aware that as of now test data will not be automatically removed.

Deactivating the automated conversion

If you do not want TESSY to derive test data from a class node’s name, there are two op-

tions:

• Deactivate the automated conversion for your whole TESSY project in the menu bar

by unchecking “Window” > “Preferences” > “CTE” > “Tree Generation” > “Convert node

names to test data”.

394 TESSY 5.1 Manual

6.8 CTE: Designing the test cases

• Detach the interface from its classification node in the context menu of the respective

node in the CTE by clicking the menu entry “Detach Interface from CTE Node” (see

figure 6.188).

Figure 6.188: Detach the interface from an CTE note

TESSY 5.1 Manual 395

6 Reference book: Working with TESSY

6.8.7 Test Data view

Whether using the CTE or creating the test cases manually within the TDE perspective:6.9.7 Test Data
view

Values are always entered in the Test Data view.

Some of the operations and overviews are only possible within theTDE perspective, so switch

to chapter 6.9.7 Test Data view to learn how to use the Test Data view.

6.8.7.1 Assigning test data to the CTE

Instead of assigning test data directly to all variables of the test object interface for each test

case, you can assign them using the tree nodes of the classification tree. For each tree node

you can assign values to variables.Assigning

values to

variables
Child nodes inherit the values from their parent nodes, but you can as well overwrite inherited

variable values for a child tree node.

Figure 6.189: Showing data of a tree node

When combining leaf classes of the classification tree to test cases, the variable assignments

of the marked tree nodes will be assigned to the respective test case. In this way, you can

assign all test data within the classification tree and get your test cases automatically filled

by setting marks within the combination table.

396 TESSY 5.1 Manual

6.8 CTE: Designing the test cases

To assign test data to a variable of the test object interface:

Þ Select a tree node within the CTE tree.

The Test Data view on the right will show the test object interface with the value as-

signments for this tree node as well as inherited values of parent nodes of the tree

node.

Þ Double-click in the value cell and enter the value.

Þ Click on to save the entries.

When selecting a test case within the test item list you will see the resulting test data assign-

ments according to the marks of the test case within the Test Data view.

6.8.7.2 Handling variants: Managing test data in variants

Assigning test data to variants needs particular attention. You need to be aware of the differ-

ences between test data on the parent module and test data of the variant and where exactly

they are located.

TESSY offers two ways of handling test data in variants.

In general it is possible to edit test data directly within the CTE nodes.

If you do so, you need to make sure that the nodes name is not contradicting the test data.

Contradictions between node names and test data lead to contradictions in the test specifi-

cations and the related test data. This, of course, will also effect your test reports. Best practice:

Assigning data

in variantsImportant: Classes should be named after concepts or ideas like “Highest Value”

or “Highest Value +1” instead of e.g. “10”. The easiest way is to simply follow the

naming of the TDE expressions which are “*max*” and “*max-1*”.

If you do not want to or for some reason cannot use such abstract class names, it is still

possible to proceed as follows:

Þ Assign all test data which should be equal in all variants in the CTE and organize your

test cases in the CTE as usual.

Þ Leave all interface variables unassigned in the CTE which will vary in the variants.

Þ Save your entries and switch to the TDE perspective.

Þ Add the missing values within the TDE.

Þ You can later create or synchronize variants.

TESSY 5.1 Manual 397

6 Reference book: Working with TESSY

Þ In the TDE perspective you can now enter missing or varied values in the newly created

or synchronized variants.

Important: This, of course, is only possible if the respective value in the

variant is not stemming from the CTE. Test data added by the CTE is indi-

cated by a gray background within the TDE.

6.8.7.3 Test data assignment precedence rules

When assigning test data to tree nodes of the classification tree, the same variable can be

assigned within different locations of the tree and each assignment can have another value

for the variable. The resulting value for such a variable (for a given test case) depends on the

classes being marked for a test case.

When calculating the variable assignments for a test case, CTE collects all marked tree

branches where the variable is assigned. A tree path is defined as the list of tree nodes

up to the root starting at the tree node where the variable is assigned. The tree paths are

sorted by position of their leaf nodes: The sort order is from left to right.

The example below (see figure 6.190) shows different assignments of variable “x” within a

classification tree. The resulting value for “x” is indicated for each test case.

Figure 6.190: Variable assignments in classification trees

398 TESSY 5.1 Manual

6.8 CTE: Designing the test cases

The resulting value for the test cases will be calculated like follows:

1. For the first test case the variable is assigned in class “b” which is a longer path than

the assignment within the root, so the value of class “b” will be taken.

2. For the second test case we have values within class “b” and class “e”. The tree paths

diverge below the root node and the classification “O” is on the right side so that the

value of class “e” will be taken.

3. In the third test case there are values within the root node and within classes “b” and

“c”. Both tree paths of the classes are longer than the root path and the classification

“B” is on the right side so that the value of class “c” will be taken.

4. In the fourth test case we have the tree paths of classes “b” and “g” that diverge at the

root. Because classification “O” is in the right side, the value of class “g” will be taken.

5. In this test case all marked classes refer to the value defined within the root node so

that the value of the root node will be taken.

6.8.7.4 Attach selected interface element to CTE node

It is possible to define a connection between the selected interface element in Test Data view

and the CTE node currently selected in the CTE.

Therefore you need to:

Þ Select tree node element in the tree area (see figure 6.191).

Þ Select the corresponding interface element in the Test Data view on the right.

Þ Right-click in respective interface element in the Test Data view to open the context

menu.

Þ Click “Attach to CTE Node” in the context menu.

TESSY 5.1 Manual 399

6 Reference book: Working with TESSY

Figure 6.191: Attaching an interface element to a tree node

The connection is visualized by a small TIE icon in the bottom left corner of the respective

CTE node:

Figure 6.192: TIE icon of a CTE node

This connection enables TESSY:

• To perform an automated conversion from class node name to test data (see 6.8.6.7

Automated conversion from class node name to test data).

• To ensure a unique descriptive name for CTE nodes attached to variables which have

a detailed description in the interface dictionary (see 6.1.6 Interface dictionary).

400 TESSY 5.1 Manual

6.8 CTE: Designing the test cases

6.8.8 Dependencies in CTE

When modeling a classification tree there are situations where the tree contains classes

which must or must not be marked simultaneously. Dependencies express such relations

and help to force particular combinations of marks in test cases and steps.

A dependency is primarily a logical expression. It can only be defined for classes which are Defining

dependencies

using the Palette

view

not further specialized, i.e. which do not have any child nodes.

Important: Please note that a dependency only implies an action. If the logical

expression is false, no action will be triggered.

6.8.8.1 Dependencies related icons in the Palette view

Icon Action / Comment

Creates an AND dependency.

Creates an OR dependency.

Creates an XOR dependency.

Creates a NEGATION dependency.

Defines a relation between the dependencies or classes.

Table 6.70: Dependencies related icons in the Palette

6.8.8.2 Defining dependencies

The classification tree of “Value in Range” the classes “range_length -> negative” implies that

the position of the value can only be outside of the interval. Thus means a test case marked

“range_length -> negative” must also mark “position -> outside”.

More information about the TESSY example “Value in Range” is provided in section

5.1 Quickstart 1: Unit test exercise is_value_in_range

TESSY 5.1 Manual 401

6 Reference book: Working with TESSY

Due to the given situation a dependency needs to be defined which expresses this relation

in the “Value in Range” example:

Þ Open “Value in Range”.

Þ Select (Define Dependency) in the CTE Palette.

Þ Select the class “range_length -> negative” first and than the class “position -> outside”.

Þ Click to lay out the tree.

Figure 6.193: Dependency defined between “range_length -> negative” and “position ->
outside”

With this a dependency between “range_length -> negative” and “position -> outside” was

defined. Therefore creating a mark for “range_length -> negative” will also create a mark for

“position -> outside” and as long as “range_length -> negative” has selected mark in the same

test case a mark for “position -> outside” will be present.

According to the result of this logical expression a “mark action” of the class connected with

this dependency is automatically triggered. An action can be selected at a class with a de-

pendency as input.

There are two actions: “activate mark” or “deactivate mark”. In the diagram the selected action

is represented by a black circle (activate mark) or white circle (deactivate mark) between

the incoming arrow and the class. The Properties view of “position -> outside” will show a

textual representation of the dependency behind the (dependency icon).

402 TESSY 5.1 Manual

6.8 CTE: Designing the test cases

Figure 6.194: Dependencies in the Properties view

In the picture below (see figure 6.195) it is a simply “negative” triggered action which is the

default “activate Mark”. In “Value in Range” you can use the deactivate mark action in the

following way:

Þ Create a dependency as explained above between the class “range_length -> zero”

and the class “position -> inside”.

Þ Select “position -> inside”.

Þ Select “deactivate Mark”.

TESSY 5.1 Manual 403

6 Reference book: Working with TESSY

Figure 6.195: Dependency defined between “range_length -> zero” and “position -> inside”

Now a mark for “position -> inside” will be removed if a mark for “range_length -> zero” is

created and it is not possible to create a mark for “position -> inside” as long “range_length

-> zero” is selected.

Important: Please remark that a dependency only implies an action. If the logical

expression is false, no action will be triggered. Moreover it is only possible to set

marks if there are not any dependencies which exclude themark directly or indirectly

by activating another mark.

6.8.8.3 Composite dependencies

Note the following restriction in defining dependencies:

• A class can only be connected with exactly one dependency. Multiple dependencies

however can be resolved by the user with the help of operators to one composite de-

pendency.

404 TESSY 5.1 Manual

6.8 CTE: Designing the test cases

In “Value in Range” such a situation exists, so it is reasonable to mark “position -> outside” if

either “range_length -> zero” or “range_length -> negative” is selected.

The situation can be solved by defining a composite dependency: Defining a

composite

dependencyÞ Select (OR dependency) in the Palette and click on an empty spot below the class

“position-> outside”.

Þ Select (Define Dependency) from the Palette and click “position -> outside”. After that

is done the dependency for “outside” is the OR operation and the former ASSIGNMENT

dependency is not connected to outside anymore.

Þ Select the now disconnected (ASSIGNMENT dependency) and than the (OR

dependency).

Þ Select the class “range_length -> zero” and the (OR dependency).

(See figure 6.196)

Figure 6.196: Composite dependency

Now both dependencies are modeled in one composite dependency and in the Properties

view of “position -> outside” the formula “negative” || “zero” is shown.

TESSY 5.1 Manual 405

6 Reference book: Working with TESSY

Figure 6.197: Composite dependency in the Properties view

406 TESSY 5.1 Manual

6.9 TDE: Entering test data

6.9 TDE: Entering test data

Figure 6.198: TDE perspective

6.9.1 Structure of the TDE perspective

Pane Location
(default)

Function

Test Project view upper left Same view as within the Overview perspective.

Test Results

view

upper left Same view as within the Overview perspective.

continue next page

TESSY 5.1 Manual 407

6 Reference book: Working with TESSY

Pane Location
(default)

Function

Evaluation

Macros view

upper left Same view as within the Overview perspective.

Test Items view lower left Same view as within the Overview perspective.

Properties view lower left Same view as within the Overview perspective.

Test Data view upper right To enter test data and expected values, after the test

execution, reviewing passed, failed and undefined val-

ues.

Test Definition

view

lower center To display the test case specification, the optional de-

scription and linked requirements of the current test

case.

Call Trace view lower center To evaluate expected calls of functions for each test

step of a test object.

Declaration view lower center Declaration and definition for usercode e.g. for freely

definable and usable variables and functions.

Prolog/Epilog

view

lower center To specify usercode that will be executed at a certain

point in time during the test execution.

Stub Functions

view

lower center To display the code for all stub functions.

Plots view lower center To visualize graphically the test results.

Usercode

Outline view

lower right To display the usercode that will be executed at a cer-

tain point in time during the test execution.

Plot Definitions

view

lower right To create and configure plots (same view as within the

TDE perspective).

Table 6.71: Structure of TDE

408 TESSY 5.1 Manual

6.9 TDE: Entering test data

Usercode

TESSY provides an interface to specify the usercode that will be executed at a certain

point in time during the test execution. Using the usercode views (i.e. Prolog/Epilog

view and Usercode Outline view) you can specify such C code fragments or emulator

scripts depending on the selected target configuration.

6.9.2 Test Project view

The Test Project view displays your test project which you organized within the Overview 6.2.3 Test
Project view

perspective.

Important: We recommend to do any changes of the test project structure within

theTest Project view of theOverview perspective. The view layout of this perspective

is optimized for this purpose!

6.9.3 Test Results view

The Test Results view displays the coverage measurement results and the results of a test 6.2.7 Test
Results view

run of expected outputs, evaluation macros and call traces, if applicable. It is the same view

as within the Overview perspective.

6.9.4 Evaluation Macros view

This view lists the detailed results of the evaluation macros if the usercode of the test object
6.2.8

Evaluation Macros
view

contains any evaluation macros. The results are displayed wherever they occur within the

usercode, e.g. within stub functions or test step epilogs. It is the same view as within the

Overview perspective.

6.9.5 Test Items view

Within the Test Items view you get an overview about your test cases and test steps which

you organized within the Overview perspective or the CTE (see section 6.8 CTE: Designing 6.2.6 Test Items
view

the test cases).

TESSY 5.1 Manual 409

6 Reference book: Working with TESSY

To create test cases and test steps manually without using the Classification Tree Editor,

switch to the Test Items view within the Overview perspective.

6.9.6 Properties view

The Properties view displays all the properties which you organized within the Overview per-

spective. Most operations are possible.6.2.4 Properties
view

For changing a source switch to the Properties view within the Overview perspective.

The view is context sensitive: You can view the passing direction and all type information ofType information

of a variable the variable (i.e. the basic type, the size as well as any modifiers and pragmas) if you select

the variable within the Test Data view (see figure 6.199).

Figure 6.199: Type information of the variable long range_start

410 TESSY 5.1 Manual

6.9 TDE: Entering test data

6.9.7 Test Data view

Figure 6.200: Test Data view

Whether using the CTE or creating the test cases manually within the TDE perspective, you

will use the Test Data view to enter or review the input values and expected results of all test

cases and test steps.

Important: CTE exported values are read-only within the TDE perspective. The

cells are insensitive. Switch to the CTE perspective to change such values if nec-

essary (respectively the underlying document).

6.9.7.1 Icons of the view tool bar

Icon Action / Comment

Highlights the next failed value.

Highlights the previous failed value.

continue next page

TESSY 5.1 Manual 411

6 Reference book: Working with TESSY

Icon Action / Comment

Highlights the next passed value.

Highlights the previous passed value.

Highlights the next undefined value.

Highlights the previous undefined value.

Highlights the next modified value.

Highlights the previous modified value.

Shows all actual values.

Highlights all undefined values.

Highlights all modified values.

Shows only failed test cases.

Shows only failed test steps.

Links with the Test Item view.

Table 6.72: Tool bar icons of the Test Data view

6.9.7.2 Status indicators

The following table shows the indicators of status and their meaning which are used by the

Test Data view.

Indicator Status / Meaning

Test step passed: The actual result did match the expected results.

Test step failed: The actual result did not match the expected results.

Test step generated: The test step was generated by the test case

generator but has no executable data yet.

continue next page

412 TESSY 5.1 Manual

6.9 TDE: Entering test data

Indicator Status / Meaning

Test step generated with data: The test step was generated by the test

case generator and executable test steps were generated.

Table 6.73: Status indicators of the Test Data view

6.9.7.3 Viewing the interface of the test object

The Test Data view displays the interface of the test object. On the left side of the Test Data

view you see the following interface elements and icons:

Important: Interface elements with the passing direction “Irrelevant” or “Extern”

will NOT be displayed within the TDE!

Icon Element Comment

Inputs

Outputs

Input values are all interface elements that are read by the

test object. Output values are written by the test object re-

spectively are the expected results.

Within the TIE you determine which values are Inputs and

which are Outputs. TESSY tries to find out the default pass-

ing directions (input or output) automatically when analyzing

the source files.

Globals Globals are the global variables referenced by your test ob-

ject. Global variables can contain global static variables and

static local variables that are defined within functions.

Parameter Parameters of the functions of the test object.

Dynamics Pointer targets, referenced through a pointer of the test ob-

ject interface.

Return Return variables.

continue next page

TESSY 5.1 Manual 413

6 Reference book: Working with TESSY

Icon Element Comment

The arrow is displayed when an element has child elements.

Click on the arrow to expand.

If you want to expand all child elements, use the context

menu (“Expand all”).

Function

Table 6.74: Interface elements and icons of the Test Data view

Every variable will be assigned to one of the interface elements described above, e.g. Pa-

rameter, Global etc. Initially, the Dynamics section will always be empty. The columns on the

right represent the test steps where the values of the variables are defined.

Please notice the following habits of this view:

• Select a column by clicking on the number of the test step. The selected column is marked

in blue (compare figure 6.201).

• Move the mouse pointer over the number of the test step to see the name of the test step

within a tool tip (compare figure 6.201).

• Select all values for a variable by clicking on the variable in the left column.

• If you select the icon “Highlight Undefined Values” in the tool bar, all variables that do not

contain any data are marked in yellow (compare figure 6.201).

414 TESSY 5.1 Manual

6.9 TDE: Entering test data

Figure 6.201: Test step 1.1 is selected and undefined values are highlighted in yellow

To choose the test steps you want to see in the Test Data view you need to select them in the

Test Item view (Ctrl + click) first. Make sure that (Link with the Test Item View) is enabled

in the Test Data view tool bar. After that only the selected test steps will be displayed (see

figure 6.202).

TESSY 5.1 Manual 415

6 Reference book: Working with TESSY

Figure 6.202: Test Data view showing selected test steps.

6.9.7.4 Entering values

Values for interface elements are entered into the cells of the Test Data view. The valuesEntering values

will be checked and/or converted when leaving the cell or when changing to any neighboring

cell.

Important: The TDE provides undo/redo functionality for all changes within the

Test Data view.

416 TESSY 5.1 Manual

6.9 TDE: Entering test data

Validation of test data values

By default, all imported or manually entered test data values are checked for syntactical correct-

ness, truncated to the type size and optionally formatted. The truncation of values depends on

which kind of number format was used:

• Decimal numbers will be checked against the minimum and maximum value of the re-

spective data type. When entering -10 for an unsigned type you will see a value of 0 as

test data. If the value is less than the minimum, the minimum value will be used, if it is

more than the maximum, the maximum value will be used.

• Hexadecimal and binary numbers will be truncated to the number of bytes available for

the respective data type, regardless if the type is signed or unsigned. When entering

0xF11 for an 8 bit type you will see a value of 0x11 as test data. Also when entering a

binary 0b1100001111 you will see a value of 0b00001111 as test data.

• Missing leading zeros will be filled up for hexadecimal and binary values. If you enter

0x12 for a 16 bit value, you will see a value of 0x0012 as test data.

• Expressions will be validated for syntactical correctness and all values used within the

expression (defines, enum constants or numerical values) will be validated as well.

After the truncation of the value to the available data type size, it will be formatted according to

the data format configured within TIE. Suppose you have an 8 bit signed value with data format

“Decimal” and you enter a value of 0xF05: The value will firstly be truncated to 0x05 and then

formatted as decimal number so that you will see 5 as test data value.

Important: If you change the data format within TIE, only newly entered test data

will be formatted according to the new format. If you want to change the format of

the available test data for a certain variable, you need to use the “Convert to Data

Format” menu entry within TDE. Make sure the box “Enable Value Checking and

Conversion” is checked within the menu “Window” > “Preferences” > “Test interface

Settings”.

Important: When running the test with undefined values, the initial value passed

to the test object depends on the default initialization of the compiler.

TESSY 5.1 Manual 417

6 Reference book: Working with TESSY

Clicking into a cell activates the inline editing mode and you can enter arbitrary values:

Þ Click in a cell and press enter.

Now you are in the inline editing mode (editing mode).

Þ Enter the value.

You can navigate between the cells with CTRL + cursor left/right.

You can apply the available operations of the context menu to multiple cells depending on

the current selection within the Test Data view:

• If you select a single variable of the interface tree, all values of all test steps for this

variable will be affected.

• If you select a test step column, all variables of this test step will be affected.

• If you select an array, a struct or a union, all components of this element will be affected.

The current selection is highlighted in blue. You need to select a test step

column before right-clicking for the context menu, because the right click

will not select the test step column.

In case of union variables, the respective components can be displayed by doubleclicking

the cell (see figure 6.203).

418 TESSY 5.1 Manual

6.9 TDE: Entering test data

Figure 6.203: Clicking in the cell shows a combo box with the union components

Defines Setting defines

Þ Double-click in a cell or press ENTER to be in the inline editing mode.

Þ Press Ctrl + Space.

A window will open with all known defines and enum constants (see figure 6.205).

In some countries you need to press CTRL + ALT + Space to get to this

result, e.g. in China.

Þ Choose your define with a doubleclick.

Important: If you want to select enum constants from anonymous enum declara-

tions (e.g. enum {A=42, B=43, C=44}) that are not used within your source file, you

need to set the module attribute “Collect All Enums” to “true” in the TEE.

TESSY 5.1 Manual 419

6 Reference book: Working with TESSY

EnumsSetting enums

Þ Click in a cell.

A dropdown menu will open showing the available enum constants for this enum type

(see figure 6.204).

Þ Choose any constant or click into the inline editor field to enter any other suitable value.

Figure 6.204: Clicking in the cell shows a combo box with the available enum constants

Arithmetic expressionsEnter

expressions
Þ Click in a cell.

Þ Enter a valid expression.

You can press Ctrl + Space at any location within the expression to get a list of available

defines or enum constants.

The following operators are supported in expressions: Addition, subtraction,

multiplication, division, shift, binary or/and. The operands can be numbers,

defines and enum constants. It is also possible to use parentheses, e.g. “(A

+ B) * 2”

420 TESSY 5.1 Manual

6.9 TDE: Entering test data

Figure 6.205: Pressing Ctrl + Space opens a list of available defines or enum constants

Þ Select a define or enum constant.

Þ Enter a valid operator and complete your expression within the inline editor of the cell.

Figure 6.206: Arithmetic expression

TESSY 5.1 Manual 421

6 Reference book: Working with TESSY

Input values

Input values are all interface elements that need to have a defined value at the beginning

of the execution of a test object. These values are included in the calculation of the output

values during test execution or will be used as a predicate of a condition.

There are three types of input values :Types of input

values
• Global and external variables, used by the test object.

• Function parameters, transferred during function call.

• Dynamic objects: They represent pointer targets, referenced through a pointer of the

test object interface (they are not really dynamic, variables will be created for each one

within the generated test driver).

Vector values for advanced stub functions

External called functions can be defined as advanced stub functions to provide the return

value and the expected parameter values within the Test Data view. If a test object calls an

external function multiple times the same return value would be returned for each invocation

and also the parameters would be checked against the same parameter values as specified

within TDE. In order to provide different values for each invocation of the advanced stub, you

can enter multiple values as a vector written within braces, e.g. 1,2 (see figure 6.207). In this

example the return value of the stub will be 1 for the first call, 2 for the second call. You can

also specify a vector value for the expected parameter values.

Figure 6.207: Entering values as vector for an advanced stub

422 TESSY 5.1 Manual

6.9 TDE: Entering test data

Handling of Arrays

Þ Right-click the array to open the array content menu.

Figure 6.208: Choosing shown arrays

Þ Choose ”Show All Array Elements“, ”Show Defined Array Elements“ or ”Show Array

Elements…“ to decide which array elements are shown.

By choosing ”Show Array Elements…“ you can select the shown array ele-

ments individually.

Important: It is not necessary to enter test data for all array elements. Entering

test data to only one array element is enough to make the test executable.

Expected values

Expected values are the calculated results regarding the input values for the test object after

test execution. TESSY will compare both expected and actual values after test execution.

The result will be either failed or passed.

Important: The values are compared with the evaluation mode equal (==). To

change the evaluation mode refer to section Entering evaluation modes.

TESSY 5.1 Manual 423

6 Reference book: Working with TESSY

There are three types of expected values:Types of

expected values
• Global or external variables: They can always be expected values as they have a valid

value after execution of a test object.

• The return value of a function.

• Dynamic objects: Referenced through a pointer that is either an input or expected value,

dynamic objects continue to be accessible after execution of a test object. They can

therefore also be expected values, just like global variables.

Initializing test data

You can initialize all interface variables of a test step at once.

Þ Right-click the variable and choose “Initialize Test Data…” from the context menu.

The “Initialize Values” dialog opens.

You can use following options:

Option Meaning

Pattern A pattern in hexadecimal format, i.e. 0xff

Value A specific value only

Random A range of generated values for the initialization. The random

values will adhere to the min/max limits of each interface variable

type

Ignore values All input and expected values will be set to “*none*”

Initialize all

array elements

All array elements will be initialized. Otherwise only visible array

elements will be initialized

Table 6.75: Options of initializing values

The following table shows the initialization values for certain data types:

Type Contents

Integer 0x00000000
i.e. if 0x42 is entered as pattern, all int variables will be initialized

with 0x42424242.

Float 0.0

424 TESSY 5.1 Manual

6.9 TDE: Entering test data

Char The pattern or numerical value

Struct All sub components are initialized according to their type

Union The first sub component is initialized as active component

Enum The first enum constant is used as initialization value

Array All array elements are initialized according to their type if option

“Initialize all Array Elements” is used

Pointers Pointers are initialized with NULL provided that they do not point to

dynamic objects

Table 6.76: Initialization values for data types

6.9.7.5 Set passing to IRRELEVANT

It is possible to set the passing direction of variables that are not needed for testing any more

to “IRRELEVANT” in the Test Data Editor. Right-click the variables you want to hide and

choose “Set Passing to IRRELEVANT” in the context menu. You can undo this by choosing

“Restore Passing” in the same menu if necessary.

Figure 6.209: Passing direction set to irrelevant

TESSY 5.1 Manual 425

6 Reference book: Working with TESSY

The chosen variable will still be displayed and marked as “[IRRELEVANT]”.When saving the

test data the passing direction of this variable is updated and the variable will no longer appear

within the Test Data view.

Important: Passing directions set to irrelevant that have been saved can only

be restored in the Test Interface Editor (TIE) (see section 6.7.4.6 Setting passing

directions).

6.9.7.6 Entering evaluation modes

Using the evaluation mode allows to specify how to compare the actual value (calculated

during the test run) with your specified expected value. The evaluation mode together with

the expected value will be used to process the test results after the test run.

The default evaluation mode is equal (==). To enter another evaluation mode:Evaluation

modes
Þ Click in a cell.

Þ Enter the desired evaluation mode within the inline editor mode (see figure 6.210).

Figure 6.210: Entering evaluation mode “unequal” within the inline editor

426 TESSY 5.1 Manual

6.9 TDE: Entering test data

The following evaluation modes are available:

Evaluation
mode

Written
as

Meaning

equal == Checks the expected value and actual value for Equality.

This is the default setting.

unequal != Checks the expected value and actual value for inequality.

greater > Checks if the actual value is greater than the expected

value.

less < Checks if the actual value is less than the expected value.

greater or

equal

>= Checks if the actual value is greater or equal to the ex-

pected value.

less or equal <= Checks if the actual value is less or equal to the expected

value.

range [1:10] Checks if the actual value is within a range, here: range 1

to 10.

deviation 100 +/- 1

100 +/- 1%

Checks if the actual value equals the expected value but

takes into account a deviation value. The deviation can ei-

ther be an absolute value or a percentage, for the example

the following actual values would yield OK: 99, 100, 101.

positive/

negative

deviation

100 +- +1

100 +- -1

100 +- +1%

100 +- -1%

It is also possible to specify a positive or negative value for

the deviation: In the example the positive deviation would

yield OK for 100 and 101 whereas the negative deviation

would yield OK for 99 and 100.

Table 6.77: Evaluation modes

Important: Please note that in TESSY “Actual -> Expected” generally does not

work for evaluation mode entries.

TESSY 5.1 Manual 427

6 Reference book: Working with TESSY

6.9.7.7 Ignoring values for a test step

By default, values have to be assigned for all variables with passing directions “IN” or “INOUT”.

It can be useful to not overwrite a value calculated in the last test step. In this case you can

use the special value “ *none* ”:

Þ Right-click a value and choose “Ignore Value” within the context menu.

6.9.7.8 Generating test steps automatically

You can generate test cases and steps automatically, i.e. test steps of a range of input values

which you enter in the TDE:

Þ Create a generator test case within the Test Items view as described in section 6.2.6.5

Creating test steps automatically.

Þ Switch back to the Test Data view.

Þ Enter your values and a range of an input value, i.e. [6:9] as in our example (see figure

6.211).

TESSY can generate the test cases stepwise: Enter a semicolon and the step size

behind the range, e.g. [6:15;3] would give you the values 6, 9, 12 and 15.

You can also enter specific values, e.g. [1,5,8] would be the values 1, 5 and 8.

Combinations are as well possible: [2:8;2,11,15,20:22] would be 2, 4, 6, 8, and 11,

15, 20, 21 and 22.

428 TESSY 5.1 Manual

6.9 TDE: Entering test data

Figure 6.211: Generator test case 4 has a range value from 6 to 9 for parameter v1

Þ Save your inputs with a click on in the TESSY tool bar.

TESSY will now automatically create a test step for every value within the range you

entered (see figure 6.212).

You might need to expand or scroll the Test Data view to see all the test

steps!

Figure 6.212: Four test steps are generated for every value within the range “6 to 9”.

TESSY 5.1 Manual 429

6 Reference book: Working with TESSY

The test steps are read only because they were generated!

You can change the type of the test case and test steps to “normal”. That way you can edit

the test steps as usual.

To change the status to normal,

Þ switch to the Test Items view.

Þ Right-click the test case and select “Change Test Case Type to Normal” (see figure

6.213).

Figure 6.213: Selecting “Change Test Case Type to Normal”

430 TESSY 5.1 Manual

6.9 TDE: Entering test data

The test case and test steps are changed to type “normal” but will indicate originally being Changing test

case to type

normal

generated with a status within the Test Items view (see figure 6.214).

Figure 6.214: The test case and test steps originally being generated.

You can reverse the action with a right click and choose “ChangeTest CaseType to Generator”

from the context menu.

6.9.7.9 Changing inherited values

Inherited modules and their test objects need to be synchronized (see Creating variant mod-

ules) to get the inherited test cases and test steps with all inherited values. The Test Data

view shows inherited and overwritten values with different colors.

TESSY 5.1 Manual 431

6 Reference book: Working with TESSY

Please notice the following restrictions for editing of inherited values:

• Dynamic objects will be inherited from the parent test object. Additional dynamic objects

cannot be created within the inherited test object.

• CTE test cases cannot be edited within the inherited test object. Any changes need to be

done within the parent test object.

• Inherited user code (e.g. prolog/epilog) cannot be overwritten with “empty” user code. It is

recommended to add a comment stating why the inherited usercode has been overwritten

instead.

Figure 6.215: Inherited value coloring within Test Data view

See figure 6.215 for the color coding of values displayed within Test Data view:

• Inherited values are displayed in light blue.

• New variables of the variant test object are shown like normal values without special

highlighting. The variable “border_size” was introduced within the variant source code,

therefore there are no inherited values.

• Overwritten values are displayed in darker blue. The value 48 is overwritten and the

tooltip will show the inherited values for such overwritten values.

432 TESSY 5.1 Manual

6.9 TDE: Entering test data

• The test step 3.1 has been deleted: The inherited values are displayed for information

only. The test step will be skipped when executing the test.

• The additional test step 4.1 cannot have any inherited values. All values are displayed

as normal.

6.9.7.10 Pointers

Þ Right-click the pointer value cell to open the context menu.

The context menu offers the following possibilities to assign a value for a pointer:

Option Meaning

Set Pointer

NULL

The value of the selected pointer will be set to NULL. The text box will

be filled with NULL.

Set Pointer

Target

You can select another interface element or a component of a structure

or union and assign its address to the pointer. The cursor will change,

when you move the mouse pointer over a variable:

The object type fits the pointers target type. You can assign the

pointer.

The object type does not match the pointers target type. You cannot

assign the pointer.

When you click on an element, the variable name of that element will

be entered into the field next to the pointer. During test execution, the

address of the variable will be assigned into the input field of the pointer.

Pointer targets can also be entered manually, e.g. an ab-

solute address or the name of a function or variable de-

fined in the usercode.

continue next page

TESSY 5.1 Manual 433

6 Reference book: Working with TESSY

Option Meaning

Create pointer

target value

Allows to create a new object as target object for the pointer. The

address of the object will be assigned to the pointer. The type of the

created object depends on the target type of the pointer.

Þ Choose “Create Pointer Target Value” from the context menu.

Þ Enter a valid C identifier as name for the new target object.

Þ Click “OK”.

A new target object will be listed in the dynamic objects section of the

TDE.

Array as

Target Value

It is also possible to create an array as target value using the Dimension

option of the Create Pointer Target dialog:

Þ Tick the check box for” As Array of Size” to enter an appropriate size

into the input field.

Þ Click “OK”.

The name of the new object appears in the input field of the pointer value.

TDE will create an array of the pointers target type. The pointer will point

to the first array element.

Within the Dynamics section, you will see the newly created target object.

You can enter values, like for every other interface element.

Table 6.78: Value assignments for pointers

6.9.7.11 Static local variables

Variables defined as static local variables within the test object or called functions can also

be tested. Since such variables are not accessible from outside the location where they are

defined, TESSY instruments the source code and adds some code after the variable definition

to get a pointer to the memory location of the variable. All static local variables can only be

accessed after the code containing the variable definition has been executed. You need to

keep this in mind when providing input values or checking results for such variables. The

following restrictions apply for static local variables:

• The first time when the code of a static local variable definition is executed, the variable

will get the initialization value assigned from the source code. It is not possible to set

the initial value from TESSY.You need at least one test step to initialize the variable by

434 TESSY 5.1 Manual

6.9 TDE: Entering test data

executing the definition code. The next test step can then supply an input value for the

variable.

• The same applies for expected values: If the source code of the variable definition has

not been executed, the result value of the respective variable is not accessible and will

be displayed as *unknown* in this case. This situation may arise when the variable

definition is located within a code block which has not been executed, e.g. within an if

statement block.

6.9.8 Test Definition view

Figure 6.216: Test Definition view within TDE with linked requirement

The Test Definition view displays the test case specification, the optional description and

linked requirements of the current test case in individual input fields. The test case specifica-

tion should enable the tester to provide concrete input values and expected results.

The Test Definition view is context sensitive! To display the specifications, definitions and

requirements for a test case:

Þ Select a test case within the Test Items view (see figure 6.216).

Important: The contents are not editable if the test cases have been created and

exported using the CTE!

TESSY 5.1 Manual 435

6 Reference book: Working with TESSY

6.9.9 Call Trace view

The Call Trace view displays the called functions for each test step of a test object within the

Expected Calls area. All functions that may be called from the test object are listed within the

Available Functions area.

The Call Trace view allows the evaluation of the called functions.

Figure 6.217: Call Trace view

Within the two areas of the Call Trace view it is possible to manage the expected order of

function calls for all test steps individually making use of the tool bar. It is also possible to

use the blue arrows between the areas pointing left, right, up or down. When the editing is

completed the settings need to be saved.

6.9.9.1 Icons of the view tool bar

Icon Action / Comment

Applies called functions to all test steps.

Copies the actual called function into the Expected Calls area.

Ignores all called functions.

Deletes all called functions.

continue next page

436 TESSY 5.1 Manual

6.9 TDE: Entering test data

Icon Action / Comment

Restores inherited called functions.

Deletes selected called function.

Enables/Disables the functions filter to show only available functions (by

default, functions called by stubbed functions are filtered out).

Table 6.79: Tool bar icons of the Call Trace view

6.9.10 Declarations/Definitions view

Figure 6.218: Declarations/Definitions view

Within the Declarations/Definitions view you can define your own helper variables that may

then be used within the user code. If you just want to declare a variable that is already

available within linked object files, you do this within the declarations section. If you want

to create a new variable, you need to enter the declaration into the declarations section and

the respective definition into the definitions section. The variable can then be used within the

prolog/epilog and stub function code.

TESSY 5.1 Manual 437

6 Reference book: Working with TESSY

Important: TESSY provides the means to add new variables within the TIE per-

spective (see section 6.7 TIE: Preparing the test interface). Such variables can be

used like normal interface variables of the test object which is much more conve-

nient than defining them here in the Declarations/Definition view.

6.9.11 Prolog/Epilog view

Figure 6.219: Prolog/Epilog view

Within the Prolog/Epilog view you can specify usercode that will be executed at a certain

point in time during the test execution. The C part of the usercode will be integrated into the

test driver and executed at the places specified.

438 TESSY 5.1 Manual

6.9 TDE: Entering test data

The following figure outlines the call sequence of the usercode parts.

Figure 6.220: Call sequence of the usercode parts

The figure shows the interaction of the usercode sections with the assignment of test data

provided within TDE and the result values that are saved into the test database and evaluated

against the expected results.

During the test object call, the code specified for the stub functions (if any functions are called

from your test object) will be executed depending on the code logic of your test object.

Within the prolog/epilog code you can reference the global variables used by your test ob-

ject that have one the passing directions IN, OUT, INOUT or EXTERN.The following special

macros are available within the prolog:

• TS_REPEAT_COUNT is a variable that controls the number of repeated calls of the

test object, the default is 1.

• TS_CURRENT_TESTCASE,TS_CURRENT_TESTSTEP contains the current test case

and test step number. This can be used to do different things for certain test cases.

• TS_TESTOBJECT_RETURN contains the return value of the latest test object call (if

the test object has a return value). This value can be used within evaluation macros in

the test step prolog.

• TS_THIS is available for C++ methods only and allows to access members of the cur-

rent “this” object (e.g. “TS_THIS.member = 5;”).

TESSY 5.1 Manual 439

6 Reference book: Working with TESSY

It is recommended to define specific prolog/epilog code instead of using the macros

TS_CURRENT_TESTCASE/TS_CURRENT_TESTSTEP

Example

Have a look at figure 6.219 Prolog/Epilog view in the beginning of this section. The test step 1.1

prolog contains the code TS_REPEAT_COUNT=2, and the Repeat Count for this prolog/epilog

section was set to 5.

The whole prolog/test object call/epilog sequence will be repeated five times and the test object

will be called twice in every repetition of this loop. Since there are 5 loops, the test object will

be called 10 times in total.

6.9.11.1 Defining and overwriting inherited code

In some cases it is useful to specify a common prolog/epilog for all test steps or for the test

steps of a certain test case. For this reason, you can enter prolog/epilog on test object or

on test case level. Such a default prolog/epilog will be inherited to the respective child test

steps. In this way you avoid to copy the same prolog/epilog multiple times to each test step.

Default prolog/epilog can be overwritten on test case/step level for individual test cases/steps

if desired.

440 TESSY 5.1 Manual

6.9 TDE: Entering test data

Figure 6.221: TESSY provides default prolog/epilog on test object level to be inherited to
test cases and test steps

For both prolog and epilog, there are up to three tabs available, depending on the selected

object:

Test objects:

• “Test Object” - The test object’s own prolog/epilog

• “Default for Test Cases” - The default prolog/epilog that will be inherited to all test cases

of this test object

• “Default for Test Steps” - The default prolog/epilog that will be inherited to all test steps

of this test object

Test cases:

• “Test Case” - The test case’s own or inherited prolog/epilog

• “Default for Test Steps” - The default prolog/epilog for the test steps belonging to that

test case

Test steps:

• “Test Step” - The test step’s own or inherited prolog/epilog

TESSY 5.1 Manual 441

6 Reference book: Working with TESSY

Figure 6.222: TESSY allows Prolog/Epilog being inherited from test case or test object

Important: To edit the default prolog/epilog, select the corresponding test object

or test case and edit the code via the “Default for Test Cases” and “Default for Test

Steps” tabs.

442 TESSY 5.1 Manual

6.9 TDE: Entering test data

6.9.11.2 Entering C code

The Prolog/Epilog view provides a popupmenu containing variables for convenient editing.

Figure 6.223: Prolog/Epilog functions

To show this menu,

Þ use the Usercode Outline view to mark the test case or test step for which you want to

set the usercode.

Þ Click into the Prolog or Epilog section of the Prolog/Epilog view and enter the usercode.

Þ Press CTRL + Space or type the first letters and press CTRL + Space.

The popup menu appears (see figure 6.223), showing all available names respectively

the filtered list according to the characters you already typed.

Important: TS_REPEAT_COUNT is only usable within the prolog section!

When generating the test driver, the prolog/epilog code is appended to the source file of the

current test object. Therefore, only variables that are declared or defined within the source

file of the current test object may be used within prolog/epilog or stub function code.

TESSY 5.1 Manual 443

6 Reference book: Working with TESSY

To edit the prolog/epilog for a test case/test step,

Þ Use the Usercode Outline view to navigate and select a test case or test step from the

tree.

Þ Enter the code within the Prolog/Epilog view.

A new node will automatically appear at the corresponding place in the outline tree (see

figure 6.224).

Figure 6.224: Editing C code

6.9.11.3 Using evaluation macros

Within the test step epilog or within stub functions, you can evaluate any variable or expres-

sion using the evaluation macros. These predefined macros allow to check an expression

against an expected value. The result is stored within the test report like the evaluation of

normal output variables of the test object.

Evaluation macros can only be used within the following Usercode sections:

• Test step epilog

• Stub function code

A popup menu contains all available interface variables and symbolic constants for conve-Evaluation

macros nient editing as well as the available evaluation macros, e.g. TESSY_EVAL_U8 for unsigned

character values:

Þ Press CTRL + Space.

444 TESSY 5.1 Manual

6.9 TDE: Entering test data

Figure 6.225: Call the popup menu by pressing CTRL + space

Þ Select the evaluation macro for the specific data type of the variable which shall be

evaluated. The only difference of the evaluation macros is the type of argument for the

actual and expected value, see table below for a description of the available types.

Þ Now the template can be edited.

Example: Below is an example showing the template in the second row and the edited

evaluation macro underneath.

Figure 6.226: Editing the evaluation macro templates

TESSY 5.1 Manual 445

6 Reference book: Working with TESSY

Both value arguments given to the evaluation macro may be of any value that fits

the specified eval macro type. By convention, the first (left side) value should be the

actual value that shall be checked and the second (right side) value should be the

expected result. Like this you will get the same order of values within the test report

as for normal output values.

Evaluation macro name C type

TESSY_EVAL_U8 unsigned, 1 byte

TESSY_EVAL_S8 signed, 1 byte

TESSY_EVAL_U16 unsigned, 2 byte

TESSY_EVAL_S16 signed, 2 byte

TESSY_EVAL_U32 unsigned, 4 byte

TESSY_EVAL_S32 signed, 4 byte

TESSY_EVAL_U64 unsigned, 8 byte

TESSY_EVAL_S64 signed, 8 byte

TESSY_EVAL_FLOAT float

TESSY_EVAL_DOUBLE double

TESSY_EVAL_LONGDOUBLE long double

Table 6.80: Available types of evaluation macros

Operator Meaning

== equal

!= unequal

< less

continue next page

446 TESSY 5.1 Manual

6.9 TDE: Entering test data

Operator Meaning

> greater

<= less or equal

>= greater or equal

Table 6.81: Operators of evaluation macros

Each invocation of an evaluation macro results in an additional entry within the test report. All

evaluation macros will be added to the list of actual/expected values of the current test step.

The results will be displayed within the Usercode Outline view and the Evaluation Macros

view.

It is possible to format the output of the evaluation macros as binary value, decimal or hex-

adecimal (default setting) by appending one of the following format specifiers at the end of

the evaluation macro name:

binary %bin, e.g. “Value printed as bin%bin”

decimal %dec, e.g. “Value printed as dec%dec”

hexadecimal %hex, default setting.

Table 6.82: Evaluation macro specifiers

The report shown below contains all possible evaluation macro name formats. The format

specifier itself will be omitted within the final evaluation macro name.

Figure 6.227: Formatting of evaluation macro values

TESSY 5.1 Manual 447

6 Reference book: Working with TESSY

6.9.12 Stub Functions view

Figure 6.228: Stub Functions view without contents

The Stub Functions view displays the code for all stub functions. Normally all stub code is

defined on test object level.

In the Stub Functions view you can insert stub code for test steps, test cases, and test objects.

The code fragments will be be combined into a single stub function implementation and will be

called in the order as shown in figure 6.229. If you don’t want to execute the parent fragments

for specific test cases or test steps, you need to add a return statement within the respective

stub code fragment.

Figure 6.229: Test execution direction using stub code

448 TESSY 5.1 Manual

6.9 TDE: Entering test data

Important: Stub code must be provided for all non-void stub functions in order

to return a valid value as result of the stub function call. If there are stub functions

without stub code, the test execution will be aborted with an error. If the return value

of a stub function is not used by the test object, you should add at least a comment

here.

Please note the error icon at the stub function name in figure 6.228 indicating that stub code is

missing. You can switch off this check by unchecking the respective test execution preference.

This preference setting will be stored within the preferences backup file as described within

Window > Preferences menu.

Figure 6.230: TESSY Preferences: Abort on missing stub code

TESSY 5.1 Manual 449

6 Reference book: Working with TESSY

6.9.12.1 Using Stub Functions

Within the stub function code you can reference the parameters passed to the stub function

and also global variables used by your test object. The following special macros are available

within the stub body:

• TS_CALL_COUNT contains the number of calls to this stub function for the current test

step. This count will restart from one for each test step.

The size of the call count is limited to 8 bit (maximum call count of 255).

Fore more information about defining the call count size please refer to the

application note “Environment Settings (TEE)” in TESSY (“Help” > “Docu-

mentation”).

• TS_CURRENT_TESTCASE,TS_CURRENT_TESTSTEP contains the current test case

and test step number. This can be used to provide different values for certain test cases.

Figure 6.231: Stub Functions view with code using TS_CALL_COUNT macro

It is recommended to define test case/step specific stub code instead of using the

macros TS_CURRENT_TESTCASE/TS_CURRENT_TESTSTEP.

450 TESSY 5.1 Manual

6.9 TDE: Entering test data

Example for the use of test object, test case and test step specific stub code:

Figure 6.232: Stub Code Levels in the Usercode Outline view

If only stub code of e.g. the test step should be executed, you need to set a return at the end

of the inserted code on test step level. If only stub code of the test step and the test case

should be executed, you need to set a return at the end of the inserted code on test case

level. Stub code on test module level will be overwritten.

It is recommended to read the sections Usercode Outline view and Prolog/Epilog view

to fully understand the handling of stub code.

TESSY will automatically generate the code to execute a test including all the stub code you

inserted in the Stub Functions view. Below you can see brief examples of inserted stub code

on test object level, test case level and test step level on the left along with the automatically

generated code resulting from that on the right.

TESSY 5.1 Manual 451

6 Reference book: Working with TESSY

Figure 6.233: Stub code examples on test object, test case and test step level

In the automatically generated test code (see figure 6.234) you can recognize the test exe-

cution direction as shown in figure 6.229.

Figure 6.234: Automatically Generated Test Code

452 TESSY 5.1 Manual

6.9 TDE: Entering test data

For more information about the Usercode Outline view and navigating within the test items

see section Usercode Outline view.

6.9.13 Usercode Outline view

Figure 6.235: Usercode Outline view

The UsercodeOutline view displays the usercode and stub function code that will be executed

at a certain point in time during the test execution and that you just defined in the Prolog/Epilog

view or Stub Functions view. Use this view to navigate within the test items when editing

prolog/epilog or stub function code.

The view shows entries for each location where usercode is defined. Click on a test case or

test step to see the inherited stub function code for the selected test item.

TESSY 5.1 Manual 453

6 Reference book: Working with TESSY

Figure 6.236: Usercode Outline view showing inherited stub code

The Stub Functions view shows the stub code to be executed for the test step 1.1 that is

currently selected within the Usercode Outline view. Please note the hint within the text field

title indicating that the stub code is inherited from the test object level.

Figure 6.237: Usercode Outline view showing inserted stub code

Now there is an inserted stub function code entry selected within the Usercode Outline view.

The entry indicates that the stub code is inserted for test step 2.1 which is also indicated

within the text field title.

454 TESSY 5.1 Manual

6.9 TDE: Entering test data

6.9.14 Plots view

Figure 6.238: Plots view

The Plot view displays the included test items and chart(s) for a plot selected in the Plot

Definitions view. The number of different charts per plot depends on the plot mode:

• test case plot: one chart for all included test items

• test step plot: one chart per included test case

• array plot: one chart per included test step

For test step and array plots the chart can be selected by navigating the test item tree.

Important: If you use other evaluation modes than equal (e.g. <, <=, >, >=, !=,

[Range]), it is not possible to display the expected values within the plot chart.

Displaying the expected values is only possible when using the evaluation mode ==

(equal). See section 6.9.7.6 Entering evaluation modes.

6.9.14.1 Test Item Tree

The test item tree on the left-hand side of the Plot view shows all test items included in the

selected plot, as defined in the Plot Definitions view via the “Set Included Test Items” com-

mand.

This tree is for navigating the different charts of a plot, if there is more than one chart avail-

able.

TESSY 5.1 Manual 455

6 Reference book: Working with TESSY

6.9.14.2 Chart

The chart displays the values of the variables included in the selected plot. The values are

color-coded:

• Yellow line: Input values

• Blue line: Expected values

• Green line: Actual values

• Red cross: Failed values

For expected values, dotted blue lines represent the upper and lower bound of expected

values such as 10 ± 5.

Only variables that have “Use in Report” checked in the Plot Definitions view are shown in the

chart. Selecting a variable in the Plot Definitions view will highlight the corresponding value

series in the Plot view.

6.9.15 Plot Definitions view

The Plot Definitions view allows creating and configuring plots from within the TIE and TDE

perspective. For details refer to section 6.7.5 Plot Definitions view within chapter TIE: Prepar-

ing the test interface.

456 TESSY 5.1 Manual

6.10 Script Editor: Textual editing of test cases

6.10 Script Editor: Textual editing of test cases

The Script Editor perspective provides textual editors supporting a test scripting language

for editing test cases, test data and usercode. The contents of the script editors show all

information of the internal TESSY data model for test objects, test cases and test steps.

Changes within the test scripts can be saved to the internal data model and vice versa. It is

also possible to merge concurrent changes made within the internal data model and within

the Script Editor.

Figure 6.239: The Script Editor view

When working with the Script Editor perspective, a new internally managed script file will be

created for each test object. All test data and usercode can be edited and saved within the Editing and

saving test data

and usercode

editor. It is necessary to commit script changes to the internal data model when tests shall be

executed. Until this point in time, the editor contents can just be saved to the underlying file.

After committing the changes, the script editor contents and the internal model are in sync.

TESSY 5.1 Manual 457

6 Reference book: Working with TESSY

6.10.1 Structure of the Script Editor perspective

Pane Location
(default)

Function

Test Project view upper left Same view as within the Overview perspective.

Test Items view lower left Same view as within the Overview perspective.

Script Editor area upper

middle

Displays the internally managed script file and allows

editing and saving it.

Console view lower

middle

Same view as within the Overview perspective.

Outline view right Displays the script structure and allows locating script

when linked with the Script Editor.

Table 6.83: Structure of the Script Editor

6.10.2 Script Editor related Icons of the main tool bar

Icon Action /
Comment

Shortcut /
Key

Replaces the script file. Different options can be chosen

from the pull down menu.

Alt + F5

Commits changes and saves the current editor contents to

the internal TESSY data model. The script contents must

be valid in order to do this synchronization

Ctrl + Enter

Merges changes and opens a merge dialog showing the

current script and data model contents.

If changes have been made both within the script and the

internal model, it is necessary to merge both contents.

Ctrl + Alt +

Enter

Reloads from model and discards the whole contents of the

editor. Builds a new script from the current internal model.

F5

Replaces the editor contents with the contents of the se-

lected file.

Alt + F5

458 TESSY 5.1 Manual

6.10 Script Editor: Textual editing of test cases

Icon Action /
Comment

Shortcut /
Key

Saves the editor contents into the selected (new) file. Ctrl + Alt + S

Table 6.84: Tool bar icons of the Script Editor perspective

6.10.3 Editing test objects, test cases and test steps

Within the Script Editor perspective, any selection of a test object will open or reveal the

respective Script Editor. The Script Editor provides syntax highlighting and anOutline view.

Figure 6.240: Element in the Outline view with related part in the Script Editor

The Script Editor also provides auto completion, formatting, validation as well as templates

for test cases or other parts of the script using the CTRL+SPACE shortcut. This will show a

menu containing context sensitive auto completions.

TESSY 5.1 Manual 459

6 Reference book: Working with TESSY

Figure 6.241: Script Editor menu with auto completions

Test cases and test steps can be added by duplicating existing test items within the editor

and adjusting the test item numbers. Duplicate UUIDs can be removed, they will be created

when committing () the changes to the model.

Alternatively, test items can be added or deleted using the Test Item view.

Figure 6.242: Test Item view

The script will then be out of date or in conflict and will need to be merged. This can easily

be done using the merge dialog (see section 6.10.7 Merging script contents) if there are no

real conflicting changes at the same locations.

After changes have been made in theTest Data Editor (TDE) and saved () the Script Editor

will also be out of date and needs to be merged (see above).

460 TESSY 5.1 Manual

6.10 Script Editor: Textual editing of test cases

6.10.4 Script states

Changes to the script and the internal model are always tracked. If there are any devia- Script changes

are trackedtions, the script editor window title will contain a status indicator prefix indicating possible

modification states (see figure 6.243).

Figure 6.243: Status indicator example within the editor title

The following script states are possible (a tooltip will be displayed when hovering over the
editor title):

Indicator Status / Meaning

> MODIFIED / The script has been changed but the model is unchanged.

< OUT OF DATE / The script is unchanged but the model has been

changed.

! CONFLICT / Both the script and the internal model have been changed

concurrently.

Table 6.85: Possible status indicators of script states

Any conflicts can be resolved when committing the changes or by using the merge operation

as displayed and described in section 6.10.7 Merging script contents.

6.10.5 The Script Editor Outline view

The Outline view in the Script Editor perspective displays the script structure and allows
locating script items when linked with the Script Editor.

TESSY 5.1 Manual 461

6 Reference book: Working with TESSY

Icon Action / Comment

Synchronizes with the Script Editor.

Sorts in alphabetical order.

Table 6.86: Tool bar icons of the Outline view in the Script Editor perspective

6.10.6 Synchronization with the internal model

The editor contents can be saved into the underlying script file while editing or when closing

TESSY. In order to execute a test the editor contents need to be synchronized with the internal

TESSY data model first.Synchronizing

script
The synchronizing can be done by using the buttons in the global TESSY tool bar described

in section 6.10.2 Script Editor related Icons of the main tool bar.

When committing script changes in conflict state, the merge dialog will automatically

appear.

6.10.7 Merging script contents

If conflicting changes have been made within the internal model and the script file, the Merge

Changes button can be used to merge both contents. This will show a merge dialog with

both the model contents and the current script contents.

462 TESSY 5.1 Manual

6.10 Script Editor: Textual editing of test cases

Figure 6.244: Merge dialog in the Compare view

This merge dialog shows that the test data of the third test case has been changed within the

script. It is easy to resolve the conflict using the buttons of the Compare view tool bar. The merge

dialog
A tooltip will be displayed when hovering over the icons in the tool bar.

Figure 6.245: Tool bar icons in the Compare view

After closing the dialog, the Script Editor will contain the results of the merge operation (i.e.

the contents of the “User Script” text pane of the merge dialog).

The script needs to be committed () in order to save the contents to the internal model.

If the merge dialog was opened automatically during a commit operation, the content

of the “User Script” pane will be used as content being saved to the internal model.

TESSY 5.1 Manual 463

6 Reference book: Working with TESSY

6.10.8 Importing and exporting script contents

Script content can be edited outside of TESSY using the save button and the replace button

in the global TESSY tool bar (see section 6.10.2 Script Editor related Icons of the main tool

bar).

Use to save the editor contents into the selected (new) file and to replace the editor

contents with the contents of the selected file.

6.10.9 Importing and exporting script contents

Script content can be edited outside of TESSY using the save button and the replace button

in the global TESSY tool bar (see section 6.10.2 Script Editor related Icons of the main tool

bar).

Use to save the editor contents into the selected (new) file and to replace the editor

contents with the contents of the selected file.

6.10.10 Script examples

All test data and usercode can be edited within the TESSY Script Editor and script content

can be imported from outside TESSY. More information about the handling of the scripting

language can be found throughout this chapter 6.10 Script Editor: Textual editing of test

cases, particularly in subsection 6.10.3 Editing test objects, test cases and test steps.

The following figures work as an example of the TESSY scripting language in the Script

Editor. One by one the figures display an exemplary TESSY test object with test cases and

test steps.

Some of the basic elements that could occur are “specification”, “description” and “comment”

for the test object in general. It is also possible to define specific “declarations” and “defini-

tions” for the test object as well as a “prolog” and an “epilog”.

464 TESSY 5.1 Manual

6.10 Script Editor: Textual editing of test cases

Prologs also exist on test case and test step level (as default): “default_testcase_prolog” or

“default_teststep_prolog”.

More elements that can be defined on test case and test step level are: “Inputs”, “outputs”,

“calltraces”, “stubfunctions”, “faultinjections” etc.

Figure 6.246: Script example – Test object

The test case as well as the test step script contains quite similar elements and they addi-

tionally have a number and a name.

TESSY 5.1 Manual 465

6 Reference book: Working with TESSY

Figure 6.247: Script example – Test case

Figure 6.248: Script example – Test step

466 TESSY 5.1 Manual

6.10 Script Editor: Textual editing of test cases

There are more possible elements such as “faultinjections”, “stubfunctions” or “calltraces” on

test object, test case or test step level. The elements “inputs” and “outputs” contain arrays

and structures.

Figure 6.249: Script example – Inputs with arrays

Figure 6.250: Script example – Outputs with structure

TESSY 5.1 Manual 467

6 Reference book: Working with TESSY

Figure 6.251: Script example – Outputs with the definition of the
active union component and assigning of values

Figure 6.252: Script example – Calltrace with two functions,
the first one called twice

The script ends with the “epilog” on test object level. The “epilog” element can also appear

on test case or test step level.

Figure 6.253: Script example – Epilog

468 TESSY 5.1 Manual

6.11 CV: Analyzing the coverage

6.11 CV: Analyzing the coverage

Figure 6.254: Perspective CV - Coverage Viewer

The CoverageViewer (CV) displays the results of the coverage measurement of a previously Coverage

measurementexecuted test, which is either

• an overall instrumentation for your whole project, which you selected in the preferences

menu of TESSY (see section 6.1.2.1 Window > Preferences menu), or

• an instrumentation which you selected within the Properties view for your module or

test object under test (see section 6.2.4 Properties view), or

• an instrumentation which you selected for your test run (see section 6.2.3.11 Executing

tests).

The available information displayed and the sub windows shown within the CV depends on

the coverage options selected during the test run. The CV will be updated with the coverage

information of the currently selected test object whenever you switch to the CV or when you

select another test object within the Test Project view.

TESSY 5.1 Manual 469

6 Reference book: Working with TESSY

Formore information about static analysis and quality metrics (Cyclomatic Complexity

(CC)), Test Case To Complexity Ratio (TC/C) and Result Significance (RS)) please

refer to subsection 6.2.3.7 Static code analysis and quality metrics.

6.11.1 Structure of the CV perspective

Pane Location
(default)

Function

Test Project view upper left Same view as within the Overview perspective.

Called Functions

view

middle left Contains the test object itself and the functions called

from the test object.

Flow Chart view upper

middle

Displays the graphical representation of the control

structure of the currently selected function.

Coverage views upper/

middle

right

Displays the results for the selected coverage instru-

mentation.

Fault Injections

view

lower left Displays the fault injections. (For more information see

chapter 6.14 Fault injection.)

Call Pair

Coverage view

lower left Displays the call pair measurements (CPC).

Code view lower

right

Displays the source code of the currently selected func-

tion (and highlights selected decisions/branches).

Report views lower

right

Displays the ASCII based coverage summary reports

for the selected instrumentation.

Table 6.87: Structure of CV

470 TESSY 5.1 Manual

6.11 CV: Analyzing the coverage

6.11.2 Instrumentation for coverage measurements

TESSY supports the following coverage measurements:

• C0 (Statement Coverage)

• C1 (Branch Coverage)

• DC (Decision Coverage)

• MC/DC (Modified Condition / Decision Coverage)

• MCC (Multiple Condition Coverage)

• EPC (Entry Point Coverage) - only for unit tests

• FC (Function Coverage) - only for component tests

• CPC (Call Pair Coverage)

Formore information about coveragemeasurements and usage of coverage analysis

refer to the application note “Coverage Measurement” in TESSY (“Help” > “Docu-

mentation”).

There are no views for the Entry Point Coverage (EPC) and the Function Coverage

(FC)! The results are displayed only within the Test Overview Report (see section

6.2.3.19 Creating reports) or the Test Project view (see figure 6.255).

Figure 6.255: Results of the EPC are displayed within the Test Project view

TESSY 5.1 Manual 471

6 Reference book: Working with TESSY

The following figure 6.256 displays a component test with a Function Coverage instrumenta-

tion result (amongst others).

Figure 6.256: Coverage results within the CV perspective (component testing)

Please notice:

• If you move the mouse over the result within the Test Project view, the percentage of the

coverage for the respective item will be displayed.

• The Called Functions view displays the coverage result for every function.

472 TESSY 5.1 Manual

6.11 CV: Analyzing the coverage

6.11.3 Test Project view

Figure 6.257: Test Project view within the CV perspective

The Test Project view displays your test project which you organized within the Overview 6.2.3 Test
Project view

perspective.

Important: We recommend to do any changes of the test project structure within

theTest Project view of theOverview perspective. The view layout of this perspective

is optimized for this purpose!

After a test run you will see columns being added to theTest Project view for each applied cov-

erage measurement. The coverage icons provide an overview about the reached coverage

for each test object as well as cumulated for modules, folders and test collections.

TESSY 5.1 Manual 473

6 Reference book: Working with TESSY

6.11.4 Called Functions view/Code view

Figure 6.258: Called Functions view

The Called Functions view contains the test object itself and all called functions of the test

object. It displays the achieved coverage of the current test run. By clicking on a function,

you can review the source code within the Code view and see the code structure within the

Flow Chart view.

To highlight the source code within the code view:

Þ Click on (Toggle Code Coverage Highlighting) in the tool bar of the Code view.

The statements, branches or conditions of the source code will be marked within the

Code view according to the selected coverage measurement. If the respective code

location have been covered successfully, i.e. 100% coverage has been reached for this

code part, it will be marked in green. Otherwise the code location will be marked in red

indicating that it has not been fully covered.

474 TESSY 5.1 Manual

6.11 CV: Analyzing the coverage

To highlight a specific code location:

Þ Select an element within the Flow Chart view.

The respective source code lines will be marked within the Code view.

To have a quick overview of the coverage:

Þ Within the Called functions view move the mouse over the function.

All the coverages will be displayed (see figure 6.258).

6.11.5 Flow Chart view

Figure 6.259: Flow Chart view

TESSY 5.1 Manual 475

6 Reference book: Working with TESSY

The Flow Chart view displays the code structure and the respective coverage in graphicalCoverage

graphically

displayed

form.

You might want to learn the functions of the Flow Chart view with an easy example:

Consult section 5.1.10 Analyzing the coverage of the Tutorial: Practical exercises.

6.11.5.1 Icons of the view tool bar

Icon Action / Comment

Searches the next uncovered decision.

Searches the previous uncovered decision.

Searches the next unreached code branch.

Searches the previous unreached connection.

Zooms out.

Zooms in.

Creates and edits fault injections.

Deletes fault injections.

Generates chart report.

Table 6.88: Tool bar icons of the Test Items view

More information about fault injections is provided in chapter 6.14 Fault injection.

476 TESSY 5.1 Manual

6.11 CV: Analyzing the coverage

6.11.5.2 Viewing functions

To display a flow chart of a function:

Þ Click on a function within the Called Functions view.

The code structure of the function will be displayed in the Flow Chart view.

Zoom in or out using the tool bar icons or the entries from the chart menu.

Within each flow chart, you will see the branches and decisions of the function being dis- Coloring within

the Flow Chart

view

played in green and red colors, which indicates whether the respective decision has been

fully covered or the respective branch has been reached:

• green: 100 % coverage

• red: less than 100 % coverage; a branch or at least one condition combination was not

executed

• gray: None of DC, MC/DC or MCC coverage has been selected for the last test execu-

tion. (Decision elements are still selectable in order to find the respective line of code

in the source code view (see figure 6.260)).

Important: Please note: The coloring of branches according to statement and

branch coverage depends on the selected test cases and/or test steps within the

C0/C1 Coverage views (see subsections 6.11.7 Statement (C0) Coverage view and

6.11.8 Branch (C1) Coverage view). The coloring of decision symbols is always

based on the results of all test cases.

If both C0/C1 and one of DC, MC/DC, MCC coverage have been selected and

not all test items are selected within the C0/C1 Coverage views, this may lead to

inconsistent coverage coloring.

TESSY 5.1 Manual 477

6 Reference book: Working with TESSY

Figure 6.260: Source code view on the bottom right of the Coverage View perspective

478 TESSY 5.1 Manual

6.11 CV: Analyzing the coverage

The following elements are displayed within the flow chart of the CV:

Element Meaning

If-else decision

The if branch on the left side was reached

once, the else branch on the right side was

not reached.

The decision was not fully covered.

For or while loop

The loop body was not reached, instead

the exit out of the loop was executed once.

The loop decision was not fully covered.

Switch statement

The first case branch was reached once,

the second case branch was not reached.

The default branch was also not reached.

continue next page

TESSY 5.1 Manual 479

6 Reference book: Working with TESSY

Element Meaning

Do while loop

The loop body was only reached once

(without repeated execution of the loop body

branch) and the exit branch was reached.

The loop decision was not fully covered.

Main flow

————————–

Condition flow

————————–

Sub flows

Main flow

———————————————————–

Statements and decisions containing sub

flows (e.g. the “?” operator) are displayed

with a special symbol in which a square and

a rhombus are merged together. The coloring

of this symbol displays the coverage of both

the decision as well as the sub flow.

In this example the square is red as the sub

flow was not fully covered. (Only one test step

was selected within the C1 Coverage view in

this case.) The rhombus however is green as

the condition was fully covered. (Based on

the result of all executed test cases).

Condition flow

———————————————————–

The detailed structure of a sub flow will be

shown within a separate flow chart. Such a

Condition view opens after double-clicking the

respective element (see figure 6.261).

Fault injection

In this branch a fault injection was created.

continue next page

480 TESSY 5.1 Manual

6.11 CV: Analyzing the coverage

Element Meaning

Plus symbol

Indicates a sub flow, also appears in combi-

nation with green or red coloring.

Black triangle

Indicates an if-else decision, also appears in

combination with green or red coloring.

Table 6.89: Elements of the Flow Chart view

Viewing sub flows

Sub flow elements (e.g. the “?” ternary operator) are displayed with a special symbol which

can appear in different colors according to the general coloring rules within the Flow Chart

view, green for 100% coverage and red for less than 100% coverage.

It needs to be kept in mind that this flow chart symbol may appear in one color or in two

different colors in different positions according to the coverage of the sub flow. The various

coloring options display the coverage status of the individual test. It has to be interpreted on

the basis of the special symbolizing of sub flows.

Possible coloring of sub flow elements within the flow chart:

Element Meaning

Showing that the decision is fully covered (inner part of the

symbol, colored in green, 100%) while the sub flow is not fully

covered (outer part of the symbol, colored in red, less than 100%).

Coverage details can be seen in the Condition view after double-

clicking the respective element in the Flow Chart view (see figure

6.261).

Showing that the decision of the condition (inner part of the sym-

bol) as well as the coverage of the sub flow (outer part of the

symbol) is fully covered (100%).

continue next page

TESSY 5.1 Manual 481

6 Reference book: Working with TESSY

Element Meaning

Showing that neither the decision (inner part of the symbol) nor

the sub flow (outer part of the symbol) are fully covered (less than

100%).

Table 6.90: Sub flow coloring in the Flow Chart view

Sub flows can appear in decisions as well as in statements.

Double-clicking or right-clicking a sub flow element opens the Condition view to show theCondition view

coverage details of the respective element (see figure 6.261). Selecting test steps in the

Branch (C1) Coverage view displays the coverage of the selected test steps in the Condition

view.

Figure 6.261: Condition view showing the sub flow coverage for one test case

482 TESSY 5.1 Manual

6.11 CV: Analyzing the coverage

6.11.5.3 Selecting elements

You can select decisions, branches and code statement elements within the flow chart. The

respective code section will then be highlighted within the source code view. Since not all

connection lines within the flow chart are branches in terms of the C1 branch definition, some

of the connection lines may not be selectable.

If a condition or a code element contains sub flows (e.g. the “?” ternary operator or statements

containing boolean expressions) you can visualize the sub flow with a double click on the

respective element. CV will open a new flow chart showing the sub flow.

You may also want to select elements to create fault injections (see chapter 6.14 Fault injec-

tion).

6.11.5.4 Searching for uncovered decisions and unreached branches

The CV provides search functionality for decisions and branches that are not fully covered

respectively reached through all the executed test cases. The decisions and branches are

already marked in red, but the search function can assist in finding all uncovered decisions

or unreached branches.

Þ Select the respective icon from the tool bar (i.e.).

The chart will change into the search result mode, marking the found element in blue.

TESSY 5.1 Manual 483

6 Reference book: Working with TESSY

Figure 6.262: Unreached code branch is marked blue

6.11.6 Fault injection

The fault injection feature providesmeans to test code parts that are not testable using normal

testing inputs e.g. endless loops, read-after-write functionality or error cases in defensive

programming. Dedicated testing code can be injected at selected branch locations of the test

object so that decision outcomes can be manipulated.6.14 Fault
injection

Fault injections are edited within the Coverage Viewer (CV) based on the flow chart of the

test object. They are displayed as blue circles at the respective branch.

Fault injections that cannot be mapped to the current source code control flow are marked

with an error symbol within the Fault Injections view on the lower pane on the left.

484 TESSY 5.1 Manual

6.11 CV: Analyzing the coverage

For more information about the handling of fault injections please refer to chapter

6.14 Fault injection.

6.11.7 Statement (C0) Coverage view

Figure 6.263: Statement coverage

The Statement (C0) Coverage view displays the statement coverage for each individual test

case and test step as well as the total coverage for all test cases (and test steps). The

coverage information in this view is calculated for the selected function within the Called

Functions view. If you only selected the C0 coverage instrumentation for test execution, you

will see the code branches marked in red and green within the flow chart; “else” branches,

that do not exist within the code, will be displayed in the Flow Chart view in gray.

Also the loop branches of while, for and do statements that are irrelevant for C0 coverage will

be displayed in gray.

TESSY 5.1 Manual 485

6 Reference book: Working with TESSY

The flow chart shows code branches and not individual statements and also blocks of

statements will be shown as one block instead of individual items for each statement.

If you select individual test cases or test steps within the test case list, the respective state-

ments covered by those test steps will be marked within the flow chart, i.e. the code branch

containing these statements will be marked. This allows finding out the execution path of the

selected test step. By selecting multiple test steps, review the resulting cumulated statement

coverage within the flow chart. The total coverage number will also be updated with the C0

statement coverage for the selected test cases/test steps.

6.11.7.1 Coverage percentage

The coverage percentage is the relation between the total numbers of statements of the

currently selected function compared to the number of reached statements. This coverage

calculation includes the currently selected test cases and test steps within the test case/test

step list (see figure 6.263). By default, all test cases are selected when opening the CV.

486 TESSY 5.1 Manual

6.11 CV: Analyzing the coverage

6.11.8 Branch (C1) Coverage view

Figure 6.264: Branch coverage

The Branch (C1) Coverage view displays the branch coverage for each individual test case

and test step as well as the total coverage for all test cases (and test steps). The coverage

information in this view is calculated for the selected function within the Called Functions view.

If you only selected the C1 coverage instrumentation for test execution, you will see only the

C1 branches marked in red and green within the flow chart.

If you select individual test cases or test steps within the test case list, the respective branches

covered by those test steps will be marked within the flow chart. This allows finding out the

execution path of the selected test step. By selecting multiple test steps, review the resulting

cumulated branch coverage within the flow chart. The total coverage number will also be

updated with the C1 branch coverage for the selected test cases/test steps.

TESSY 5.1 Manual 487

6 Reference book: Working with TESSY

6.11.9 Decision Coverage view

To understand the Decision Coverage view please refer to the description of the MC/DC

Coverage view below. The only difference is the calculation according to the definition of the

decision coverage.

6.11.10 MC/DC Coverage view

The MC/DC Coverage view displays the coverage of the currently selected decision within

the Flow Chart view (see figure 6.265). If no decision is selected (as initially when starting

the CV), the MC/DC Coverage view is empty.

Figure 6.265: MC/DC Coverage view

488 TESSY 5.1 Manual

6.11 CV: Analyzing the coverage

When selecting a decision, the respective combination table according to the MC/DC cover-

age definition will be displayed within the MC/DC-Coverage view (see figure 6.266).

Figure 6.266: MC/DC coverage

The combination table contains all atomic conditions of the decision. The conditions are the

basic atoms of the decision which remain after removing the or, and and not operators from

the decision. TESSY calculates the MC/DC set of true/false combinations of the condition

atoms that fits best to the test steps executed during the test run.

The last table column contains the test step that caused the execution of the decision with

the true/false combination of the respective table row. If one or more of the condition com-

binations were not reached during the test run, the test step column of those rows will be

marked in red.

TESSY 5.1 Manual 489

6 Reference book: Working with TESSY

6.11.10.1 Selecting decisions

Þ Select a decision by clicking on the respective control flow element within the Flow

Chart view.

The code fragment will be marked within the source code view (see figure 6.266).

The decisions are either green or red depending on the degree of coverage. If no coverage

information is available, i.e. when you ran the test without any of DC, MC/DC or MCC instru-

mentation selected, the decisions within the flow chart will appear in gray and the Coverage

view will not be available (N/A).

6.11.11 MCC Coverage view

To understand the MCC Coverage view please refer to the description in section 6.11.10

MC/DC Coverage view. The only difference is the calculation according to the definition of

the MCC coverage.

6.11.12 Call Pair Coverage view

The call pair coverage measurement (CPC) supports measuring whether all call locations of

functions or methods within the test object have been exercised at least once. It fulfills the

requirements of ISO 26262 as an alternate coverage method for integration testing instead

of applying the function coverage (FC) method.

Figure 6.267: Call Pair Coverage view with coverage results

490 TESSY 5.1 Manual

6.11 CV: Analyzing the coverage

6.11.13 Coverage Reviews view

The new coverage review feature supports handling of unreached source code lines when

measuring code coverage using the new Code Access (CA) and Hyper Coverage (HC) fea-

tures. Source code lines can be marked with predefined as well as arbitrary comments for

documentation of why they cannot be reached. Typical situations are hidden debug code or

unreachable default branches.

The reviewed source code lines will be considered for the Code Access (CA) and Hyper

Coverage (HC) measurement so that it will always be possible to reach full coverage by

using the standard coverage measurements in combination with the coverage reviews.

All coverage reviews will be documented within the test summary report.

Figure 6.268: The new Coverage Reviews view

The Coverage Reviews view within the Coverage Viewer (CV) perspective lists the reviews

for each source file. The line number information of the coverage reviews will be updated

on source file changes automatically. It may happen that coverage reviews become invalid

if source code positions cannot be assigned to the currently available source code. Invalid

coverage reviews will still be listed but they will not be considered for the coverage calculation

any more.

TESSY 5.1 Manual 491

6 Reference book: Working with TESSY

6.11.13.1 Icons of the view tool bar

Icon Action / Comment

Refreshes the list of coverage reviews.

This may be necessary if the source code has changed and

the line number information is outdated.

Creates a new coverage review for any of the available source

files.

To edit the selected coverage review.

Deletes the selected coverage review.

Links with Test Cockpit view.

Table 6.91: Tool bar icons of the Coverage Reviews view

6.11.13.2 Preferences

The Coverage Review Settings within the Preferences contain a predefined list of review

comments that can be selected when creating new coverage reviews.

Figure 6.269: The Coverage Review Settings with predefinded list

492 TESSY 5.1 Manual

6.11 CV: Analyzing the coverage

6.11.13.3 Creating coverage reviews

The Coverage Reviews view works in conjunction with the source code view that shows the

achieved coverage results by highlighting the source code. The source code view will show

the source file related to the selection within the Coverage Review view.

Important: Please note: It is necessary to select a source file within the Test

Cockpit view in order to create a new coverage review for selected source code

line(s).

New coverage reviews can be added using the Source Code view that highlights any un-

reached code lines:

Þ Select one or several source code lines.

Þ Right-click and select “New Coverage Review” from the context menu.

Þ Select a predefined review comment using the combo box or write a customized text.

Figure 6.270: Adding new coverage reviews

TESSY 5.1 Manual 493

6 Reference book: Working with TESSY

The lines covered by the newly added coverage review will be highlighted in light blue:

Figure 6.271: Added coverage highlighted blue

6.11.13.4 Validating Coverage Reviews

The line numbers of the coverage reviewsmay become invalid if the source files are changing.

This will be indicated by a warning decorator. In such cases you need to verify or adjust the

line numbers. If no change is required, select the respective coverage review and choose

“Set Valid” from the context menu.

Figure 6.272: Set Valid in the context menu

494 TESSY 5.1 Manual

6.11 CV: Analyzing the coverage

In case of source file changes, the coverage review line numbers will automatically be ad-

justed whenever the modules are analyzed. Warnings will be shown for coverage reviews

positioned outside functions/methods or when the respective function/method source code

was changed.

6.11.14 Coverage Report views

There are up to five coverage reports available depending on the instrumentation mode se-

lected for test execution. They contain the summarized coverage information of the last test

execution:

• The statement (C0) coverage report contains some meta information (e.g. number of

statements, reached statements, total statement coverage) and the source code of the

test object.

• The branch (C1) coverage report contains some meta information (e.g. number of

branches, reached branches, total branch coverage) and the source code of the test

object.

• The decision coverage (DC) report lists all decisions of the test object code including

the coverage tables with the respective decision condition combinations.

• The modified condition/decision (MC/DC) coverage report lists all decisions of the test

object code including the coverage tables with the respective MC/DC condition combi-

nations.

• The multiple condition (MCC) coverage report also lists all decisions of the test object

code including the coverage tables with the respective MCC condition combinations.

TESSY 5.1 Manual 495

6 Reference book: Working with TESSY

6.12 IDA: Assigning interface data

Figure 6.273: IDA perspective

For coherent testing it is essential to realize changes of the interface of test objects and to

re-execute previously passed tests to assure that any changes of the source do not cause the

previous passed tests to fail. This is often summed up with the keywords “regression testing”.

If the interface of a test object changes, TESSY will indicate the changes with specific status

indicators at the test object icon. With the Interface Data Assigner (IDA) you can assign the

elements of a changed (new) interface to the respective elements of the old one and start

a reuse. The reuse operation will copy all existing test data to the newly assigned interface

elements.

496 TESSY 5.1 Manual

6.12 IDA: Assigning interface data

To appropriately react to changes, TESSY needs to know the current structure of the

interface. Therefore it determines for each module the available functions and their

interfaces by analyzing the source code. This information is stored in the interface

database so that TESSY knows about any changes and can keep track of test data

assignments made for a whole module or just for individual test objects.

6.12.1 Structure of the IDA perspective

Pane Location
(default)

Function

Test Project view upper left Displays your test project. For editing your test project

switch to the Overview perspective.

Properties view lower left Displays the properties of your test project, e.g. sources

to the test object.

Compare view right Displays two interfaces, either of the same test object

(old and new interface) or of different test objects. You

can assign the changes by drag & drop.

Table 6.92: Structure of the IDA perspective

6.12.2 Status indicators

The following test object status indicators are relevant when reusing test data.

Indicator Status / Meaning

The test object has changed.
You see these test objects, but there is no operation possible. You have to

start a reuse operation.

The test object is newly available since the last interface analysis.
You have to add test cases and test steps and enter data for a test.

continue next page

TESSY 5.1 Manual 497

6 Reference book: Working with TESSY

Indicator Status / Meaning

The test object has been removed or renamed.

You still see these test objects, but there is no operation possible. You have

to assign this test object to any other and start the reuse operation.

Table 6.93: Status indicators of test objects

6.12.3 Test Project view

The Test Project view displays your test project which you organized within the Overview6.2.3 Test
Project view

perspective.

Important: We recommend to do any changes of the test project structure within

theTest Project view of theOverview perspective. The view layout of this perspective

is optimized for this purpose!

6.12.4 Properties view

The Properties view displays all the properties which you organized within the Overview per-

spective. Most operations are possible.6.2.4 Properties
view

For changing a source switch to the Properties view within the Overview perspective.

6.12.5 Compare view

The Compare view shows two versions of an interface depending on the TESSY objects

selected for comparison:

• For a single module or test object, it shows the old interface on the left side and the

new interface on the right side.

• When assigning two different modules or test objects, it shows the interface of the

source object on the left side and the interface of the target object on the right side.

498 TESSY 5.1 Manual

6.12 IDA: Assigning interface data

Figure 6.274: Compare view

The Compare view will be used for reuse operations of whole modules or individual test

objects as well as when assigning test data from one test object (or module) to another test

object of the same or different module.

6.12.5.1 Comparing interfaces and assigning changes

Within the Compare view you can see the old interface of our test object and the new one.

The red exclamation mark within the new interface indicates the need to assign this interface

object before starting the reuse.

The title of the view shows the old name versus the newly assigned name.

To assign changes:

Þ Use the context menu or just drag and drop from the left side (see figure 6.275).

The red exclamation mark turns to a green check .

TESSY 5.1 Manual 499

6 Reference book: Working with TESSY

Figure 6.275: Use drag and drop in IDA

You can assign single functions and just commit the assignments for this function

(the other functions will stay in state “changed” and can be reused later). Or you

can assign and reuse whole modules (which is convenient when there are just little

changes within the function interfaces.

500 TESSY 5.1 Manual

6.12 IDA: Assigning interface data

To commit assignments:

Þ Click on (Commit) in the menu bar of the Compare view.

The data of all test cases and test steps will be copied from the old interface to the current

test object interface. The test object changes to yellow to indicate that all test cases are

ready to be executed again. If there are missing test data within the new interface (e.g. due

to additional variables being used by the test object), the icon will show an intermediate test

object state . In this case you need to add any missing test data within theTest Data Editor.

Please notice the following habits:

• Removed and changed test objects require a reuse operation before you can further op-

erate on them.

• Unchanged test objects have been automatically reused when opening a module, i.e.

they will be ready to use without further activities required.

• Removed test objects will only be displayed as “removed”, if they did contain any test cases

and test steps.

6.12.5.2 Assigning test cases to other test objects

You can use the IDA to assign test cases from one test object to another test object within

the current project. Both test objects can be either from the same or from different modules.

It is also possible to assign the contents of whole modules to other modules.

Important: When assigning test cases to another test object, the target test object

contents will be overwritten completely!

To assign test cases to another test object:

Þ Change to the IDA perspective.

Þ At first drag the target test object into the right side of the Compare view (or placeholder

view).

Þ Secondly drag the source test object into the left side of the Compare view.

TESSY 5.1 Manual 501

6 Reference book: Working with TESSY

Þ Assign the interfaces to your needs. Variables that cannot be assigned can be left out

of scope (they will just not be used). Additional variables of the target test object that

cannot be assigned from the source test object will be left empty after the assignment.

To commit assignments:

Þ Click on (Commit) in the menu bar of the Compare view.

The data of all test cases and test steps will be copied from the source test object to the target

test object. The target test object changes to yellow if every variable of the interface could

be assigned from the source test object. Otherwise it will display an intermediate test object

state indicating that only parts of the test data are available.

502 TESSY 5.1 Manual

6.13 SCE: Component testing

6.13 SCE: Component testing

The component test feature is only used for integration testing. You do not need this

feature for unit testing.

Figure 6.276: Perspective SCE - Scenario Editor

The component test feature within TESSY supports testing of several functions (represent-

ing the software component) that interact with themselves as well as with underlying called

functions (of other components). The main difference to unit testing of individual functions is

the focus of testing on the external interface of the component instead of internal variables or

control flow. You should be familiar with the overall usage of TESSY for the normal unit test-

ing. Some features like usercode and stub functions are still available for component testing,

but the respective editors will be found at different locations.

TESSY 5.1 Manual 503

6 Reference book: Working with TESSY

The component test feature allows creating calling scenarios of functions provided by a soft-

ware component. Within these scenarios, the internal values of component variables and any

calls to underlying software functions can be checked. TESSY provides the Scenario Editor

(SCE) for this purpose. All scenario-related inputs are available through the SCE. Instead

of having individual test objects and test cases for the component functions, the component

test itself provides a special node called “scenarios” seen as one test object. The test cases

belonging to the scenarios node are the different scenarios for the component.

Within one scenario, you can set global input variables, call component functions, check the

calling sequence of underlying software functions and check global output variables.

The content of each scenario may be divided into the following parts:

• setting the input variables

• calling component functions

• checking calls to underlying functions

• setting/checking variables during scenario execution

• executing usercode and eval macros

• checking the output variables

The Usercode Editor (UCE) is not available for component testing, because the prolog/epilog

code and definitions/declarations sections can be edited directly within the SCE.You will find

C-code fragments that can be added into the scenario control flow. Also the code for stub

functions can be edited directly within SCE.

6.13.1 Creating component tests

The component test management is based on TESSY modules alike a unit test. In contrary

to unit testing you will probably use multiple source files instead of only one file. Other parts

of the testing process stay basically the same:

Þ Create a new module as described in section 6.2.3.5 Creating tests and reviews.

Þ Include all the source files, include paths and defines necessary to analyze the source

code of the component.

Þ Activate “Component” as kind of test (see figure 6.277).

504 TESSY 5.1 Manual

6.13 SCE: Component testing

As environment the default GNU GCC compiler is used. This means the component

tests will be executed on the Windows PC, using the microprocess of the PC as exe-

cution environment. If you use a cross compiler for an embedded microcontroller, you

run the tests either on the actual microcontroller hardware or on a simulation of the

microcontroller in question.

Figure 6.277: Component test

In contrast to normal unit tests, you will only see one special test object called

“Scenarios” (see figure 6.278).

TESSY 5.1 Manual 505

6 Reference book: Working with TESSY

Figure 6.278: Scenarios of a component test

506 TESSY 5.1 Manual

6.13 SCE: Component testing

6.13.2 Preparing the test interface

The interface of the component is a summarized interface of all the non-static component

functions:

Figure 6.279: Interface of the scenarios

The External Functions section marked with the icon lists the interface to the underlying

software functions, if any external function is called from the component. These external

functions can be replaced by stub functions like within the normal unit test.

The Component Functions section marked with the icon lists all the component functions,

i.e. the functions visible from outside the component. Local static functions will not be listed

here.

TESSY 5.1 Manual 507

6 Reference book: Working with TESSY

The meaning of the status indicators for component functions is as follows:

Indicator Status / Meaning

Function is not used for component test.

The variables used by this function are not available within the

component test interface of the scenario. These variables are

set to IRRELEVANT.

The variables used by this function will be available within the

scenario and the passing direction may be adjusted.

Table 6.94: Status indicators of the Interface view of a component test

6.13.3 Configuring the work tasks

The time based scenario description within SCE is based on time steps that represent the

cyclic calls to a special handler function of the component. Such a handler function controls

the behavior of a time-sliced component implementation.

The handler function needs to be selected as work task prior to executing any scenarios:

Þ Select the desired function.

Þ Click on (Set as Work Task) in the tool bar.

The icon of the function will change from to (see figure 6.280).

Figure 6.280: Two component functions were set as work task within the Component
Functions view

You can select one or more of the component functions.

508 TESSY 5.1 Manual

6.13 SCE: Component testing

You can select several component functions as work tasks. This will be useful when

testing several components together which all have a handler function.

The Work Task Configuration view allows more detailed settings for the work tasks.

Figure 6.281: Work Task Configuration view

You can drop component functions directly into this view to configure them as work tasks.

The view provides the following global settings:

• Time Unit (default is “ms”) which is just the display representation to be used within the

GUI and reports.

• Mode Variable Name (not used by default) which optionally provides calling the work

tasks depending on the value of the selected variable. All scalar variables can be se-

lected here.

For each work task, you can specify the following settings:

• Start Time: Determines the point in time where this work task shall be called the first

time for each scenario. The default is 0 ms which causes the work task being called

immediately starting with the first time step.

• Cycle Time: Determines the elapsed amount of time after which the work task shall be

called again. The default is 10 ms which causes the work task being called for every 10

ms time step.

TESSY 5.1 Manual 509

6 Reference book: Working with TESSY

• Mode: If a global Mode Variable Name is selected, you can specify for which value of

this variable the respective work task shall be called. During test execution, this work

task will only be called within its specified start and cycle time, if the mode variable has

the specified value.

The order of appearance within the Work Task Configuration view reflects the actual calling

sequence of the work tasks for each time step of the scenario. You can reorder the work tasks

via drag and drop.

Another global setting is the calculated cycle time which depends on the cycle times of the

given work tasks. It will be calculated automatically from the cycle times of the given work

tasks.

Figure 6.282: Calculated cycle time

Within the example in figure 6.282, the resulting global cycle time (i.e. the step width of the

time steps of the scenarios) will be 10 ms, because this is the greatest common divisor of all

the given work task cycle times (i.e. 20 and 50 ms in this example).

6.13.4 Designing the test cases

Testing a component requires a set of scenarios that stimulate the component and check the

behavior of the component. Such a scenario contains calls to component functions and other

possible actions and expected reactions of the component. A scenario can be seen as a test

510 TESSY 5.1 Manual

6.13 SCE: Component testing

case for the component. Therefore, TESSY displays the list of scenarios within the Test Item

view like normal test cases but with a different icon.

There are two possibilities for creating scenarios: Either by creation them ad hoc or by de-

veloping them systematically using the classification tree method supported by CTE within

TESSY.

After synchronizing the CTE test cases there will be the respective number of scenarios within

TESSY.You can add additional scenarios using the context menu within the scenario list. To

edit the scenario, start the scenario editor SCE.The (empty) scenarios will be displayed within

SCE providing the specification and description of the designed scenario test cases.

6.13.5 Editing scenarios

Any scenario has two different tasks to fulfill:

• The stimulation of the component like any external application would do it. This includes

normal behavior as well as abnormal behavior which should check the error handling

of the component.

• Checking the reaction of the component caused by the scenario stimulation.

We will examine the different possibilities to check expected behavior of the component under

test. There are at least the following methods available:

• Checking return values of component functions called while stimulating the component.

• Checking the values of global variables (of the component).

• Checking the calling sequence of underlying external functions of the component. This

would check the interface to any underlying components used by the component under

test.

• Checking parameters of calls to underlying external functions (implemented as stub

functions).

• Providing return values from calls to underlying external functions (implemented as stub

functions) to the component.

The following sections describe the required settings for the above mentioned check meth-

ods.

TESSY 5.1 Manual 511

6 Reference book: Working with TESSY

6.13.5.1 Adding Function Calls

Stimulating calls to component functions or checking of calls to underlying external functions

can be added to time steps:

Þ Drag and drop the functions from the component functions onto the desired time step

(see figure 6.283).

Figure 6.283: Adding Function Calls

There are some settings required for the function calls depending on the kind of function:

• component function: Parameter values need to be provided.

• component function: The return value has to be checked directly (for scalar types) or

assigned to a variable for later evaluation.

• external called function: The expected time frame of the call to these functions needs

to be specified. This defines the time range starting from the current time step, where

a call to this function is rated as successful with respect to the calling sequence.

6.13.5.2 Entering test data for time steps

You can set input values or check output values of any variable at every time step of the

scenario. According to your settings within TIE you have access to all variables available

within the component interface. The test data can be entered within the Test Data view of the

scenario perspective. When you select a time step, the Test Data view provides a column

named like the time step for entering either new test data values or editing existing ones (see

figure 6.284)

512 TESSY 5.1 Manual

6.13 SCE: Component testing

Figure 6.284: The Test Data view of ’Scenarios’

The Test Data view provides most of the editing features like for the normal unit testing. After

entering any values, the icon of the respective time step will change indicating the test data

status. The Test Data view shows columns for all time steps that contain test data plus one

column for the currently selected time step.

Time step indicator icons for test data (see also figure 6.285):

• Gray indicator: Some input values are assigned but some are still missing and need

to be provided. Select “*none*” for input values of time steps that you do not want to

assign.

• Yellow indicator: At least all input values are assigned for this time step. The output

values do not need to be assigned to execute a scenario.

Figure 6.285: Indicator icons for the test data

TESSY 5.1 Manual 513

6 Reference book: Working with TESSY

Important: All time steps with test data need to have a yellow indicator before the

scenario can be executed!

The icon of the scenario will change to yellow if there are no more time steps with a gray

indicator.

6.13.5.3 Checking return values of component functions

When dragging component functions into the scenario, you need to provide the parameter

values. For scalar values, you can simply add decimal or floating point numbers depending

on the type of variable.

You can also provide a symbolic name of a variable with the corresponding type. This name

will be added into the test application without any checking. If the symbolic name does not

exist, there will be error messages when compiling the test application.

Either provide a value (for scalar return value types) or specify the symbolic name of a variable

which the return value shall be assigned to (in this case, the variable provided should be of

the same type like the return value type).

6.13.5.4 Checking the calling sequence

The calling sequence of calls to underlying external functions may be checked on an ab-

stract level within the scenario. Not the absolute calling sequence will be evaluated, but the

existence of function calls within a given period of time within the scenario. This provides

a robust mechanism for call trace checking that ignores the internal implementation of the

component.

How does it work? You specify the following information within the scenario for each expected

function call:

• The time step where you expect the call at the earliest.

• The number of expected consecutive calls to the function (default is 1).

• Optionally a period of time (the time frame) from that starting point where the invoca-

tion of the function call is still successful with respect to the expected behavior of the

component.

514 TESSY 5.1 Manual

6.13 SCE: Component testing

Both these settings are available for each expected call to an external function. The time

frame is zero by default indicating that the expected function call shall take place within the

same time step. If you specify the time frame as 60 like within the example above, this

indicates that the expected call could take place within time step 20ms, 30ms or up to 80ms

to be successful.

The exact sequence of the calls to those functions will not be examined, any of them may be

called within the given time frame interval. The report shows the result of the evaluation of

the call trace for the example above. The actual call trace entry contains the time step where

this call occurred, the expected call trace entry shows the expected time frame period.

The following table shows the possible evaluation results for the call trace of the example
calls to function crossed_50() and crossed_75().

Time
step

Result for call to
crossed_50() [40 ms]

Result for call to
crossed_75() [40-80 ms]

40ms ok ok

50ms failed ok

60ms failed ok

70ms failed ok

80md failed ok

90ms failed failed

Table 6.95: Example: possible evaluation results

If you need to check the exact calling sequence, you should set the time frame to zero. Other

functions called in between the expected function calls are ignored. On the other hand, the

time frame provides you with a powerful way to describe expected behavior of the component

without knowing details about the exact implementation.

6.13.5.5 Checking if a function is not called

You may check that a function is not called within a given time interval. The example below

checks that the function crossed_75()is not called within 100ms after the stimulation of the

component by setting the expected call count to zero.

TESSY 5.1 Manual 515

6 Reference book: Working with TESSY

Figure 6.286: A function is not called

The crossed icon shows the special value of the expected call count, indicating a check that

the function shall not be called.

6.13.5.6 Checking stub function parameters

Because called external functions need to be replaced by stub functions, you can check

the parameter values like during unit testing, depending on the type of stub function you

choose.

For more information refer to section 6.7.4.9 Defining stubs for functions.

6.13.6 Executing the scenarios

After implementing and editing the scenarios within SCE, execute the scenarios:

Þ Select the desired scenario test cases and execute the test using the Execute Test

button within the tool bar.

516 TESSY 5.1 Manual

6.14 Fault injection

6.14 Fault injection

The fault injection feature providesmeans to test code parts that are not testable using normal

testing inputs e.g. endless loops, read-after-write functionality or error cases in defensive

programming. Dedicated testing code can be injected at selected branch locations of the

test object so that decision outcomes can be manipulated. Such fault injections are valid for

specially marked fault injection test cases only. This ensures proper operation of the normal

test cases without any side effects that may be caused by fault injections.

6.14.1 Managing fault injections in the Coverage Viewer

Fault injections are edited within the Coverage Viewer (CV) (see chapter 6.11 CV: Analyzing

the coverage for more information about the Coverage Viewer) based on the flow chart of

the test object. They are displayed as blue circles at the respective branch. The injected

code will either be injected into the respective branch or directly before the decision of this

branch. This is useful because normally the decision outcome needs to be manipulated in

order to reach a formerly unreachable branch.
6.11 CV:

Analyzing the
coverage

Figure 6.287: Fault injection in the Flow Chart view of the CV

TESSY 5.1 Manual 517

6 Reference book: Working with TESSY

Each fault injection is identified by its branch path which represents the decisions that need

to be taken to reach the desired branch. This allows finding the right location of the fault

injection even after source code changes. Fault injections that cannot be mapped to the

current source code control flow are marked with an error symbol within the Fault Injections

view of the CV.

Figure 6.288: Fault Injection not found

Such unmapped fault injections can be assigned to branches via drag and drop onto the

desired branch.

6.14.1.1 Fault injection related tool bar icons

Icon Action / Comment

Edits fault injections.

Deletes fault injections.

Table 6.96: Fault injection related tool bar icons in the Flow Chart view of the CV

6.14.2 Creating fault injection test cases

Fault injection test cases are specially marked in order to distinguish between normal func-

tional test cases and those added for specific testing challenges like unreached branches.

The same circle icon (see subsection 6.14.2.1 Status indicator) decorates fault injection test

cases within the Test Item view in the Overview perspective.

518 TESSY 5.1 Manual

6.14 Fault injection

Figure 6.289: Fault injection test case

Normal test cases can be changed to fault injection test cases and vice versa using the

context menu of the Test Items view in the Overview perspective.

Test cases for fault injections are only effective if they reach the decision of the branch

where the injected code has been added. Otherwise the injected code would be

useless because it would not be executed.

It is recommended to first run all normal test cases in order to reveal any unreached branches

within the control flow of the test object shown within the CV. Because the CV knows which

test cases have reached certain decisions with unreached branches, it is very easy to select

appropriate fault injection candidate test cases. For this purpose, the Edit Fault Injection

dialog (see figure 6.290) provides a list of test cases reaching the decision of a selected

branch. One or several of these test cases can be copied as fault injection test cases for

such unreached branches.

6.14.2.1 Status indicator

Indicator Status / Meaning

Indicates a fault injection.

Table 6.97: Indicated fault injection in the Test items view

TESSY 5.1 Manual 519

6 Reference book: Working with TESSY

6.14.3 Creating and editing fault injections in the Coverage Viewer

Fault injections are created and edited within the Coverage Viewer (CV). For more

information about the CV see chapter 6.11 CV: Analyzing the coverage

Þ Select a branch of the flow graph within the CV and click on the “Edit Fault Injection”

button within the Flow Chart view tool bar.

This will open the Edit Fault Injection dialog (see figure 6.290).Fault injection

dialog

Figure 6.290: The Edit Fault Injection dialog

520 TESSY 5.1 Manual

6.14 Fault injection

Important: Fault injections will only be applied if at least one fault injection test

case is available! Also make sure that your fault injection test cases reach the

respective code location where the fault injection code gets injected.

To edit your fault injection within the dialog you need to know:

• The “Branch” text field is read-only and displays the current line number of the decision

of the selected branch. The branch path identifies the location of the selected branch

within the control flow of the test object.

• As an option you can enter a description for the cause of the fault injection. This text

will appear within the test report.

• Select whether the code shall be injected into the branch or directly before the decision

of the selected branch (by selecting the “Insert code before decision” toggle button).

• Enter the code to be injected.

• Select the applicable fault injection test cases. Be aware that this is only possible if the

existing test cases have been executed with coverage measurement enabled. Other-

wise you can only select to include all fault injection test items.

Within the include list of the dialog you will find all normal functional test cases that reach the

branch decision if there is no other existing fault injection test case that reaches this decision.

Such fault injection candidates will be listed with a “Copy of” prefix in front of their name. They

will be actually copied when you save all changes done to fault injections.

Figure 6.291: Include list at the bottom of the Fault Injection dialog

TESSY 5.1 Manual 521

6 Reference book: Working with TESSY

The following possible situations can arise:

Precondition Items being displayed within the include list of
the fault injection dialog

Test not executed or executed

without coverage measurement.

None.

No fault injection test cases

available.

“Copy of” candidates reaching the branch decision

(or an empty list if none reaches the decision).

Any fault injection test case

reaches the branch decision.

Only fault injection test cases reaching the branch

decision.

No fault injection test case

reaches the branch decision.

“Copy of” candidates reaching the branch decision

(or an empty list if none reaches the decision).

Table 6.98: Possible situations in the include list of the Edit Fault Injection dialog

After creating or editing fault injections the CV becomes dirty and displays an asterisk at

the respective Flow Chart view title. You will be asked to save the changes made when

switching to another test object or another perspective. Any copying of fault injection test

case candidates will be delayed until saving. This preserves the information about reached

branch decisions until the end of the editing operation.

6.14.4 Fault injections within the report

The test details report contains a table with all fault injections for the respective test object

and a list of test cases marked as fault injection test cases.Fault injection

report

Figure 6.292: Example of the Fault Injections report

522 TESSY 5.1 Manual

6.15 Mutation testing

6.15 Mutation testing

Mutation testing can be applied to test objects with existing successfully executed test cases.

It is important that all test cases are passed because a mutation can only be detected by one

of the following checks:

• A test case fails (i.e. the actual result does not match the expected outcome)

• A test case causes a timeout (i.e. the mutation caused an endless loop)

• A test case causes an access violation (e.g. a null pointer access)

Each of those results are fine in the sense of mutation testing. This is because the test cases

should detect all mutations if they are well designed and covering all test relevant aspects.

The results of mutation testing can be displayed as mutation score within the Test Project

view when enabled within the Preferences. The column will show the percentage of killed

versus total number of mutations.

Figure 6.293: Mutation testing

Within the Test Items view, each test case will also show its mutation score: Here it does not

matter how many mutants were killed by each test case. A failed result is only displayed if a

test case does not kill any mutant.

Figure 6.294: Mutation score

TESSY 5.1 Manual 523

6 Reference book: Working with TESSY

6.15.1 Preferences

Within the preferences there is a new section “Mutation Tests” that contains all possible set-

tings for the following operations that can be mutated:

• Logical operations

• Relational operations

Figure 6.295: Mutation testing within the Preferences

524 TESSY 5.1 Manual

6.15 Mutation testing

Within the Matrices in the Preferences you can choose for an operation (represented by a row

in the matrix) the respective mutation operations that shall be performed (contained within the

columns). Different default settings can be chosen and individual settings within the matrix

are also possible (which will result in the “Custom” button being selected automatically.

Important: The default for logical operations is to invert the operation because a

subtle mutation from e.g. “&&” to “&” will most probably not be detected due to the

equivalent results of these operations in the C language.

The mutation score can be activated as additional result column for the Test Project view and

the Test Items view within the “Metrics” section in the Preferences:

Figure 6.296: Mutation Score within the Metrics in the Preferences

The mutation score should be applied as useful hint where to enhance the test cases. But it

should not be required to always reach 100% mutation score because there may be cases

where mutations cannot be detected.

TESSY 5.1 Manual 525

6 Reference book: Working with TESSY

6.15.2 Test execution settings

Mutation testing can be activated for each test object that has been executed successfully.

Please note that all tests need to be passed to apply mutation testing.

Select “Run mutation test” as additional test execution type:Test execution

settings for

mutation testing

Figure 6.297: Activating Mutation testing in the Test Execution Settings

526 TESSY 5.1 Manual

6.15 Mutation testing

This will cause the normal test execution being run and subsequently all additional test exe-

cution types will be executed as well. If the normal test execution fails, all further execution

types will be aborted as well.

Important: It is recommended to run the normal test execution with coverage

instrumentation. This will provide coverage results and enhance the mutation score

because only such code locations will be mutated that were covered by test cases.

Without coverage information available, the mutation test will be applied to all code

locations, even those that will definitely not be reached by any test case. This is

especially important when running component tests because normally there are

parts of the code that are not covered by test cases.

6.15.3 Mutation view

The results of mutation testing can be examined within the CoverageViewer perspective. The

Mutation view lists all mutations that were applied to the original source code. The view will

remain empty unless mutation tests have been executed.

When selecting a mutation or decision the respective code will be highlighted within the

source code view. The respective element within the coverage Flow Chart view will also

be selected.

Figure 6.298: The Mutations view

Mutation testing

results

TESSY 5.1 Manual 527

6 Reference book: Working with TESSY

For each decision within the code theMutations view shows the operations that weremutated.

Each operation is listed with its original code and with the mutated code as child entry. The

“Operation” column contains the original operation and the respective mutated operation.

The “Result” column shows which mutations have been killed by the test cases of this test

object.

Mutations can be detected by test failures (i.e. deviations from expected results, failed call

trace or eval macros), by an access violation or by an execution timeout. All such results yield

a passed mutation result. If the mutation survived all test cases the mutation result is failed.

A tooltip on a failed result icon indicates the kind of failure.

Important: The module attribute ”Execution Timeout“ will not be considered when

running mutation tests. A timeout value will automatically be derived from the actual

execution time of the test object execution preceding the mutation test execution.

This ensures that TESSY will recognize an endless loop caused by the mutated

code.

If certain code mutations cannot be detected by a test case (i.e. due to an equivalent mutant

that behaves the same as the original code), those mutations can be excluded. It is possible

to exclude a single mutation as well as the whole decision from being mutated.

Excluded mutations will be displayed in light gray.

Figure 6.299: The Mutations view with excluded mutations

528 TESSY 5.1 Manual

6.15 Mutation testing

Excluded mutations will not be applied anymore and they will also be excluded from the

mutation score calculation for the test object.

For component testing, all code locations that were not reached by the existing test cases

will automatically be excluded from being mutated. You can show the automatically excluded

mutations by deactivating the filter .

Important: Please note that this feature requires running the normal test with any

kind of coverage instrumentation.

TESSY 5.1 Manual 529

6 Reference book: Working with TESSY

6.16 Backup, restore, version control

With TESSY you can easily backup modules and tasks into a directory and check in into

a version control system. Modules and tasks can also be restored from that directory which

facilitates checking out modules and tasks from the version control system onto another com-

puter and restoring the test database.

You can backup individual tasks, modules, folders or whole test collections. The backups will

be stored as TMB files. Restoring the files is either possible within the original folder or as

well from another location.

Besides the TMB file, you can store SCRIPT files for each test object containing all tests.

These ASCII based files can be used for diff purposes to review the changes of tests within

the version control history.

Warning: Using the restore function you have to keep in mind that script files are

only transferred into the location where internal script files are stored. The TESSY

model itself will not be updated. (See chapter 6.10 Script Editor: Textual editing

of test cases for more information.) Therefore external changes to the generated

backup scripts are not recommended.

If uncommitted user script changes are found during the backup process, a warning

dialog will appear.

Use the import function instead of the database restore in order to apply script

changes made outside of TESSY.

6.16.1 Backup

Þ In the menu bar select “File” > “Database Backup” > “Save…” .

The Save Database dialog will be opened with your module already selected (see figure

6.300).

530 TESSY 5.1 Manual

6.16 Backup, restore, version control

Figure 6.300: Save Database dialog

TESSY 5.1 Manual 531

6 Reference book: Working with TESSY

Þ Decide, whichmodules you want to save by either selecting them separately or pressing

the button “Select All”.

Þ Decide, if you want to save the coverage settings, test report options or dialog settings

from the Window > Preferences menu.

Þ If you have linked your test cases with any requirement documents, you can choose to

save the referenced requirement documents as well. In this case the requirements will

be saved within the TMB file.

Þ If you want to safe variants and scripts, please remember to select it (see figure 6.300).

Information about scripts is provided in chapter 6.10 Script Editor: Textual editing of

test cases.

Information about variants can be found in chapter 6.2.3.9 Creating variant modules

and in section 6.2.6.7 Test cases and steps inherited from a variant module.

Þ Click “OK”.

The “Backup Folder” displays the backup directory of the current project. We recom-

mend to use this directory for any backup and restore operations.

Figure 6.301: Files of the backup

532 TESSY 5.1 Manual

6.16 Backup, restore, version control

For each module there will be a file named like the path to the module starting from the test

collection. The file name will be escaped using URL encoding which replaces for instance

the space character with a “ %20 ” . The preferences are stored within separate files within

the “preferences” subdirectory.

6.16.2 Restore

6.16.2.1 Restore into the original location

Þ Select “File” > “Database Backup” > “Restore…” .

The Restore Database dialog will be opened.

Þ Select the directory with the backup.

The box “Modules” now shows the hierarchy of modules that can be restored from the

given TMB files within the backup directory (see figure 6.302).

Þ If there are any requirement document backups, the respective requirement documents

will appear within the box “Requirements”.

Important: Make sure you ticked the requirement boxes to import them!

Þ Click “OK”.

TESSY 5.1 Manual 533

6 Reference book: Working with TESSY

Figure 6.302: Restore Database dialog

534 TESSY 5.1 Manual

6.16 Backup, restore, version control

If you want to include external user script changes into your restoration, you need

to select “Restore scripts” before starting the restoring process. But please keep

in mind, that only the internally managed user scripts will be updated and not the

TESSY model itself.

More information about the handling of scripts is provided in chapter 6.10 Script

Editor: Textual editing of test cases.

6.16.2.2 Restore into another location

You can also restore TMB backup files into another than the original location:

If you select any folder for which there are no corresponding TMB backup files, restore any

of the available TMB files as children of this folder. The original test collections and folders of

the TMB files will be restored as sub folders of the current folder instead.

6.16.3 Version control

We recommend to save backups of all test relevant files into a version control system on a

regular basis. At least when the test development is completed, the whole test setup should

be saved as backup.

Þ Follow the steps described above to create the necessary files.

Þ Save the following files and contents of directories into your version control system:

• tessy – PDBX file

• preferences – XML document

• Contents of the config directory

• Contents of the backup directory

TESSY 5.1 Manual 535

6 Reference book: Working with TESSY

Figure 6.303: Directories and files within the database directory of the TESSY project

The directory work contains only temporary files created during development and

execution of the tests. You can delete this complete directory to save disk space

after the testing work is completed.

The directory persist contains the current databases of the test project. This directory and

the sub directories will be restored when restoring TMB backup files. The valuable contents

of this directory will be saved into the TMB files created during the backup process.

When you restore the whole project onto another computer, the directory persist will be

restored from the TMB backup files.

In the preferences.xml workspace specific options like “Dialog Settings”, “Script Editor”, “Static

Analysis”, “Tasks”, “Test Execution Settings”, “Test Interface Settings”and “Test Project Settings”

are stored.

Also project specific options like “Metrics” and “Test Report Options” are stored in the

preferences.xml.

536 TESSY 5.1 Manual

6.16 Backup, restore, version control

Workspace specific options can be overwritten with project specific values:

By choosing which preferences to save in the Save/Restore dialog (see figure 6.300 and

figure 6.302) you can define the workspace preferences which are supposed to be overwritten

whenever restoring the project.

TESSY 5.1 Manual 537

6 Reference book: Working with TESSY

6.17 Command line interface

TESSY provides a command line interface which allows writing batch script files that control

various operations within a TESSY project. The command line operations are available by

invoking an executable program called “tessycmd.exe”.

The program can be called either from a DOS command line shell or from a DOS batch script

or other script formats that support calling DOS executables.

Before invoking any “tessycmd.exe” commands you need to start TESSY.The “tessycmd.exe”

will connect to a running instance of TESSY in order to execute any commands. You can

run TESSY either in GUI mode with a graphical user interface (when started normally using

“TESSY.exe”) or in headless mode without a GUI (when started using “tessyd.exe”).

For information about the usage of TESSY together with continuous integration

servers like Jenkins refer to the application note “Continuous Integration with Jenk-

ins” (“Help” > “Documentation”).

As a precondition for command line execution you need to have a readily configured project

and some TMB backup files within this project containing your tests. This project should then

be restored from your version control system into any location on a computer controlled by

your continuous integration system. Via “tessycmd” commands you can now restore your test

project from the TMB files and execute the tests.

Transformation of the TESSY result XML files into XUNIT format is described within section

6.17.5 Execution and result evaluation.

Important: It is mandatory to utilize the GUI for creating test projects with test

data. Already developed tests can be run from the CLI.

6.17.1 Starting TESSY in headless mode

For test automation on continuous integration servers or nightly builds it is required to start

TESSY in headless mode (i.e. without displaying a GUI). TESSY provides a special starter

application for this purpose called “tessyd.exe”. When invoking “tessyd.exe” within your batch

script, it will start TESSY in headless mode and wait until the TESSY application is ready to

receive commands via “tessycmd.exe”.

538 TESSY 5.1 Manual

6.17 Command line interface

At the end of your script you should shutdownTESSY using the same “tessyd.exe” application
with the parameter “shutdown”. The calling sequence for running batch tests would be like
follows:

tessyd.exe --file <tessy.pdbx file>

tessycmd <commands>

tessyd shutdown --copy-log <directory>

Table 6.99: Calling sequence for running batch tests

When running TESSY in headless mode, the console output will be written into a file

“console.log” within the directory:

%USERPROFILE%\.tessy_51_workspace\.metadata

For details on how to archive any problems and console outputs for further analysis

refer to subsection 7.2.3.2 Headless operation problems log.

6.17.2 Invoking ``tessycmd.exe''

The executable that provides all command line operations is available within the TESSY in-

stallation directory:

C:\Program Files\Razorcat\TESSY_5.x\bin\tessycmd.exe

Þ Start a DOS shell.

Þ Change to the directory “bin”.

Þ Call the executable.

TESSY 5.1 Manual 539

6 Reference book: Working with TESSY

Figure 6.304: DOS command line shell

6.17.3 Usage of ``tessycmd.exe''

The available commands provide means to create, select and list TESSY objects, i.e. a

project, test collection, folder, module, test object. After invoking any create commands, the

respective new TESSY object will be selected. You can invoke further commands to ma-

nipulate any previously created or selected TESSY objects. You need to call all commands

according to the following sequence:

• Connect to TESSY.

• Select or create TESSY objects.

• Invoke commands to start operations on the selected TESSY objects.

• Disconnect from TESSY.

Important: If you are not connected, invoking any commands will fail.

The current state (connection and selection of TESSY objects) of the “tessycmd.exe” exe-

cutable is managed by the currently running TESSY application. If you restart TESSY, the

state of “tessycmd.exe” will be reset to the initial state, i.e. disconnected.

540 TESSY 5.1 Manual

6.17 Command line interface

6.17.4 Commands

Command Operation

tessycmd -h Displays a complete list of the available

commands

tessycmd -h <name fragment> Displays a list of the commands matching the

given name fragment

tessyd -f <name of pdbx file> Imports and opens the project referred by the

given .pdbx file

tessyd -p <name of project> Opens the given project (Must be already

available within the project list.)

tessycmd connect Connects to the running TESSY instance (If a

project was specified when running tessyd, this

project is automatically selected after

connecting.)

tessycmd list-projects Lists the available projects

tessycmd disconnect Disconnects from TESSY

Table 6.100: Excerpt of the possible commands of the command line interface

To execute “tessycmd.exe” within any directory, add the directory “bin” of the TESSY

installation to the Windows path environment variable.

6.17.5 Execution and result evaluation

The most common batch operation would be to start TESSY with a readily configured project,

run a TESSY batch operation and evaluate the results.

Please note the following options for “tessycmd” commands that are useful for this operation:

tessycmd exec-test <batch file> [-o <output directory>]

TESSY 5.1 Manual 541

6 Reference book: Working with TESSY

The optional output directory overwrites the report output directory given within the batch file

(*.tbs). If provided, the generated reports are copied to that output directory after execution

of the batch file.

In this way you can easily specify the output path for result XML files on the command line:

tessycmd xslt [-xsl <XSL file>] [-o <output file>] <XML file>

With the optional XSL file you can specify the XSL transformation being applied to theTESSY

XML result file created with the previous step. A template for an XUNIT compatible transfor-

mation can be found within the installation directory of TESSY:

C:\Program Files\Razorcat\TESSY_5.x\bin\plugins\com.razorcat.tessy.
reporting.templates\5.x\ci\TESSY_TestDetails_Report_JUnit.xsl

Important: There is no command to create a new project from scratch using the

command line because the necessary options would be too extensive to be han-

dled usefully on command line. Please follow the steps described within chapter 4.1

Creating databases and working with the file system and in chapter 6.16 Backup,

restore, version control on how to create an empty project with the required config-

uration and save this project to disk. Such an (empty) project can be copied to any

location on disk and populated with your TMB files using “tessycmd”.

6.17.6 Headless operation

The CLI command line execution mode of TESSY is designed for usage on continuous inte-

gration platforms like e.g. Jenkins. Therefore it is desired that TESSY does an auto-reuse of

existing tests on interface changes and tries to execute as many tests as possible with newer

versions of the source code being tested when running in CLI mode.

The following relevant source code changes will be auto-reused as far as possible in CLI

mode:

• Additional or removed called functions

• New variables or struct/union components being used

• Old variables or struct/union components being no longer used

• Additional or removed test objects

• Additional or removed defines/enums

542 TESSY 5.1 Manual

6.17 Command line interface

As a result, the tests executed in CLI mode may be run with uninitialized new variables which

could hide existing or newly introduced errors within the software being tested. Also endless

loops may occur due to such uninitialized variables.

Warning: Such auto-reused tests may have lost significant test data! Therefore it

is discouraged to apply CLI auto-reuse on the working copy of your project.

For details on how to archive any problems and console outputs for further analysis

refer to subsection 7.2.3.2 Headless operation problems log.

6.17.7 Example: DOS script

You will find the following example DOS script within the TESSY installation directory:

C:\Program Files\Razorcat\TESSY_5.x\Examples\CommandLine\cmd_line_example.bat

The script is prepared to import TESSY backup files (TMB files) into the currently openTESSY

project. It will create a new test collection “Examples” and import the existing TMB files into a

newly created folder. After the import it executes the imported modules. To run the script:

Þ Start TESSY, create a new project and open this project.

Þ Start a DOS command shell.

Þ Change to the bin directory of the TESSY installation:

C:\Program Files\Razorcat\TESSY_5.x\bin

Þ Invoke the DOS batch script “cmd_line_example.bat”. Alternatively, double-click on the

file “cmd_line_example.bat” which invokes the DOS script within a new DOS shell.

There is a pause command at the end which causes the DOS shell to remain open

after execution of the script.

TESSY 5.1 Manual 543

7 Troubleshooting

For compiler/target settings refer to our application notes available in the Help menu

of TESSY (“Help” > “Documentation”)!

If you have troubles with errors or do not know how to proceed:

• Check this manual and make sure that you have operated correctly.

• Check section 7.3 Solutions for common problems.

• Check our application notes that are available in the Help menu of TESSY (“Help” >

“Documentation”).

• Check our website for commonly asked questions and current issueswww.razorcat.com.

7.1. Contacting the TESSY support 545

7.1.1. Creating the TESSY Support File . 545

7.1.2. Tipps for a better TESSY Support File . 547

7.2. Enhanced error handling 549

7.2.1. Problems Log dialog . 549

7.2.2. Problems view . 551

7.2.3. Opening external problem logs using the Support menu 552

7.3. Solutions for common problems 555

7.3.1. TESSY does not start or gives errors when starting 555

7.3.2. License server does not start or gives errors 556

7.3.3. Working with constant variables . 558

7.3.4. Dealing with too long project paths . 562

544 TESSY 5.1 Manual

https://www.razorcat.com

7.1 Contacting the TESSY support

7.1 Contacting the TESSY support

If you have further questions or if there is a problem you could not solve with the documen-

tations described above, please contact our Technical Support via e-mail:

support@razorcat.com

Include in your support request e-mail:

• your contact data

• a short description of your question or problem

• the TESSY Support File if you get errors

• a screenshot showing the error message and related view contents of the GUI

The TESSY Support File (TGZ file) contains information about test object including

data, compiler, project settings etc. It helps the support to detect the cause of your

problem.

7.1.1 Creating the TESSY Support File

Þ In TESSY, select the module or test object that is causing the problem.

Þ Click “Support” in the menu bar.

Þ Select “Create Support File …” .

Þ Tick the box “Preprocessed sources” if possible.

Important: The box “Preprocessed Sources” is not ticked by default. This

avoids that confidential sources might be included accidentally. Whenever

you can afford to provide the sources to the support, tick the box “Prepro-

cessed Sources”. In most cases it is necessary for successful problem in-

vestigation.

TESSY 5.1 Manual 545

mailto:support@razorcat.com

7 Troubleshooting

Figure 7.1: Dialog for creating the TESSY Support File

Þ You can also change the file name and choose a folder if you wish.

Þ Click “OK”.

The TESSY Support File (TGZ file) is created.

546 TESSY 5.1 Manual

7.1 Contacting the TESSY support

7.1.2 Tipps for a better TESSY Support File

1. Reduce unnecessary information:

Þ Before reproducing the problem, switch to the Console view of the perspective “Overview”.

Þ In the tool bar click on the icon (Clear Console).

All messages will be deleted.

2. Enable TESSY to display additional information:

Þ In the main menu bar select “Support” > “Logging …” .

Þ Select a process, the level (if selectable) and “on” as the table beneath “Table Name”

explains (see table below).

It is possible to enable logging for all process steps.

Figure 7.2: Dialog for logging settings

TESSY 5.1 Manual 547

7 Troubleshooting

The additional information can relate to different process steps within TESSY. Enable the
logging of the information you suspect the problem to stem from:

Process step Log if …

Process Creation parts of TESSY do not start correctly or TESSY is not able

to start the test system (e.g. debugger).

Parser problems occur during analysis of the source code to deter-

mine test objects and their interfaces. Often caused by in-

correct syntax.

Instrumenter problems occur during instrumentation of the source code

to determine code coverage.

Makefile Commands the test application (slave) or the test driver (master) cannot

be created or are created incorrectly.

Target Communication problems occur in the communication betweenTESSY and

the debugger (e.g. the test system).

High level you want to log the general TESSY activities. Seldom re-

quired to find a problem.

Low level you want to log debugger-specific activities. Often very use-

ful.

Table 7.1: Information to log and add to TESSY Support File

Þ You can save the settings for logging with ticking the box “Remember current settings

…” .

3. Reproduce the problem:

Þ Do the actions again that lead to the problem (e.g. opening the module).

Þ Keep the respective element selected that caused the problem (e.g. the test object in

case of errors while executing) when creating the support file.

4. Create the support file, now including all log messages.

More information about how to create a support file is provided in subsection 7.1.1 Creating

the TESSY Support File

548 TESSY 5.1 Manual

7.2 Enhanced error handling

7.2 Enhanced error handling

In general setting up software tests is a complex task. Problems showing up during the test

execution process can have various reasons.

To more easily locate possible errors that can appear while executing tests TESSY offers an

enhanced error handling to provide enhanced error messages and logging capabilities for

command line execution.

An error dialog shows the full exception chain, the context (e.g. the affected test object) and

provides easy access to the error log file and console messages of the affected operation

causing the error.

Important: TESSY will collect all problems and related console outputs into prob-

lem files within the “%USERPROFILE%\.tessy_51_workspace\.metadata” directory.

The newest file will be kept as “problems.zlog” and up to nine older files will appear

with time stamps in the file name.

7.2.1 Problems Log dialog

If the test execution fails for some reason, TESSY opens an information dialog with more

details about the problems that occurred. This makes it easier to handle such issues.

Figure 7.3: Problems Log dialog

TESSY 5.1 Manual 549

7 Troubleshooting

Þ Click on “Details” to find more information.

Figure 7.4: Problems Log dialog with details and context menu for individual log entries

“Open Log File” in the Help Menu (see figure 7.6) will open the log file in a text editor.

550 TESSY 5.1 Manual

7.2 Enhanced error handling

A right click on an entry within the Problems Log dialog opens a context menu with several
options:

Icon Action Comment

Copy to Clipboard Copies the text of the selected line and additional

stack trace information if available.

Find Locates the context (e.g. module or test object)

of error in the Test Project view in the Overview

perspective.

Create Support File … Creates a support file.

Open Execution Log Shows all console messages of the operation that

caused the error.

Table 7.2: The context menu of the Problems Log dialog

7.2.2 Problems view

The Problems view in the Overview perspective also offers access to information about

execution problems. It displays all errors occurred during the current TESSY session (unless

“Clear problems view before execution” is selected within the execution preferences).

Figure 7.5: Problems view with context menu

TESSY 5.1 Manual 551

7 Troubleshooting

A right click in every line opens a context menu with several options:

Icon Action Comment Shortcut /
Key

Copy to Clipboard Copies the selected line. Ctrl + C

Find Locates the context (e.g. module or test

object) of error in the Test Project view in

the Overview perspective.

Ctrl + F

Open Problems Log … Opens the Problems Log dialog. Enter

Delete Deletes the selected line. Del

Table 7.3: The context menu of the Problems view

Also a double click on every line in the Problems view reopens the Problems Log

dialog.

7.2.3 Opening external problem logs using the Support menu

Figure 7.6: Support menu with problem menu items

552 TESSY 5.1 Manual

7.2 Enhanced error handling

7.2.3.1 Session problems log

The item “Open Workspace Problems Log” in the Support menu of the menu bar opens

an information dialog with a list of problems that have occurred during the current TESSY

session.

Figure 7.7: The Workspace Problems Log

7.2.3.2 Headless operation problems log

The other menu item “Open Problems Log …” opens the Windows file chooser so you can

open a log from a remote continuous integration server (e.g. Jenkins) which was produced

while running your current TESSY project. This allows you to analyze any errors or warnings

from the Jenkins job and find the related TESSY objects within your project.

TESSY 5.1 Manual 553

7 Troubleshooting

Please follow the steps described below to open the log file:

Þ Run the command “tessyd shutdown --copy-log <directory>” as final part of your Jenk-

ins build step.

This will shutdown TESSY and copy the “problems.zlog” into the given directory. The

directory must exist and should be located within the current Jenkins workspace.

Þ Archive the contents of this directory as build artefact.

Þ Download the artefact to your local computer.

(There should be a “problems_<time stamp>.zlog” file.)

Þ Select the “problems_<time stamp>.zlog” file within the file chooser dialog.

The current time stamp will be added to the “problems.zlog” file name when using the “–copy-

log” option. This allows storing problem log files of multiple subsequent headless TESSY

sessions into the same artefact directory.

For more information about the command line interface please refer to section 6.17

Command line interface).

The Problems Log dialog will now display all problems that occurred during the Jenkins job

execution and you can find the related TESSY objects and the related console outputs for

each individual test object execution error or warning.

554 TESSY 5.1 Manual

7.3 Solutions for common problems

7.3 Solutions for common problems

7.3.1 TESSY does not start or gives errors when starting

Error message: Diverse errors, maybe none

Error description: TESSY does not start or displays exceptions within all

GUI windows (views).

Specific

occurrence or

requirement:

Error occurs when starting TESSY or while in use.

Possible cause: There might be a problem due to corrupted files needed

for the Eclipse TESSY product startup.

Table 7.4: Startup process problems

Solution:

Delete the following directories in given order. After every deletion try to start TESSY again.

If it fails, delete the next directory.

Important: Close TESSY completely before deleting any of those directories!

The following example path names reflect aTESSY version 5.1.5. Please make sure

to adjust the path names for the TESSY version you are currently using!

Þ Delete folder %userprofile%\.tessy_v5.1.5.

Þ Delete the file %userprofile%\.tessy_51_workspace\preferences.xml.

Important: This will reset your preference settings to the defaults!

Þ Delete folder %userprofile%\.tessy_51_workspace\.metadata.

Important: This will reset your window layout of the GUI to the default

settings!

TESSY 5.1 Manual 555

7 Troubleshooting

Þ Delete folder %userprofile%\.tessy_v5.1.5.

Þ Delete folder %userprofile%\.tessy_51_workspace.

Important: After this you need to re-import all your projects into the project

list again! Themost simple way to do this is to double-click on the respective

“tessy.pdbx” file.

7.3.2 License server does not start or gives errors

Error message: Diverse, e.g. A license server is not running.

Error description: The license server does not start, or you get an error

when starting it.

Specific

occurrence or

requirement:

-

Possible cause: Corrupt/incorrect license key.

Table 7.5: License server problems

Solution:

Check your license key:

Þ Start the License Manager manually if it has not started yet: “Start” > “All Programs” >

“TESSY” > “Floating License Manager”.

Þ Click on (Check) to check your license key file.

Þ Check the error message (see figure 7.8).

556 TESSY 5.1 Manual

7.3 Solutions for common problems

Figure 7.8: License key check unsuccessful: license key is incorrect for the host id

In many cases you can already determine the problem with the help of the error message. In

case of the error “No maching hostid for key” the license key does not match to the host id of

your computer:

Þ Configure the correct license key file in the manager: Click on (Configure) and

select the correct license key file. Click “OK”.

Þ Click on to check the license key file again.

Þ If the error still appears, contact our support (see Contacting the TESSY support) to get

a new license key file.

TESSY 5.1 Manual 557

7 Troubleshooting

7.3.3 Working with constant variables

Setting a variable declared with the “const”modifier keyword may result in undefined behavior

and lead to error messages. In those cases set the variable passing to “IRRELEVANT” in the

TIE. After that was done the test shall pass through without any restriction.

Figure 7.9: Variable passing set to “IRRELEVANT”

Important: Please note that normally constant variables are read-only variables

and can not be assigned.

558 TESSY 5.1 Manual

7.3 Solutions for common problems

7.3.3.1 Assignment of read-only variables

If read-only variables need to be assigned, choose from the following solutions:

1. Undefine the const modifier in the Properties view (for individual modules)

The modifier “const” needs to be removed in order to write to such variables. You can remove

this modifier without changing the source file using a special define that replaces the “const”

keyword with nothing.

Þ In the Test Project view click on the module you want to test.

Figure 7.10: Properties view with undefined const modifier

TESSY 5.1 Manual 559

7 Troubleshooting

Þ To add a define that replaces the “const” keyword with an empty content click on

(see figure 7.10) in the Properties view. The New Define popup window opens.

Þ Enter a define with the name “const” and an empty value as shown below (see figure

7.11).

Figure 7.11: New Define popup window

Assignments to read-only variables are now possible in the chosen module. When this define

is in place, all variables with the “const”modifier will appear as if the “const” has not been used

(i.e. the variables are not “const” any more and can be changed during the test execution).

2. Modify the attribute “Compiler Defines” in the TEE (for global use)

Þ In the menu bar click “File” > “Edit Environment…” .

Þ In the Project Environments view of the TEE perspective select your compiler.

Þ In the Attributes view in the “Compiler and Linker” section right-click in “Compiler De-

fines” > click “Edit Attribute…” .

560 TESSY 5.1 Manual

7.3 Solutions for common problems

Figure 7.12: Edit the Attribute Value of the “Compiler Defines”

An “Edit Attribute” dialog opens.

Figure 7.13: Add “const=” in the editor

Þ Add “const=” under “Value:” and click “OK”.

Þ Save your modifications when leaving the TEE perspective.

TESSY 5.1 Manual 561

7 Troubleshooting

Figure 7.14: Save the “Compiler Defines” changed to “const=”

All “const” modifiers are now generally replaced with an empty content.

7.3.4 Dealing with too long project paths

It is a known problem with TESSY that it leads to error messages if project paths are too

long. This occurs due to Windows APIs used by TESSY, also some of the external compilers

supported by TESSY show the same behavior. This can not be influenced by Razorcat.

There are two ways to avoid or deal with potential problems in relation to this:

• Store your TESSY project data in a particular project file higher up the path, e.g.:

C:\Projects\ProjectXY instead of
C:\Projects\ProjectXY\QualityAssurance\Test\TESSY\RootOfProjectXY.

• Shorten the too long project path with a virtual drive by using theWindows utility “subst”.

To create a virtual drive with the “subst” utility:

Þ Open the Windows command prompt.

Þ Type “subst T: C:\Projects\ProjectXY\QualityAssurance\Test\TESSY
\RootOfProjectXY”.

Fore more information about creating a virtual drive refer to the Windows

operating system help.

Þ Open your project in TESSY using the new virtual drive, in this case: “T:\”.

562 TESSY 5.1 Manual

7.3 Solutions for common problems

Important: Be aware that making use of a virtual drive will only work for the actual

user. Therefore it is necessary that all users working on this project apply the same

subst command on their computers.

TESSY 5.1 Manual 563

Appendix

564 TESSY 5.1 Manual

A Abbreviations

API Application Programming Interface

C0 Statement Coverage

C1 Branch Coverage

CC Cyclomatic Complexity

CPC Call Pair Coverage

CTE Classification Tree Editor

CV Coverage Viewer

DC Decision Coverage

DOS Disk Operating System

EPC Entry Point Coverage

ECU Electronic Control Unit

FAQ Frequently Asked Questions

FC Function Coverage

GUI Graphical User Interface

GUID Global Unique Identifier

HTML Hyper Text Markup Language

IDA Interface Data Assigner

IEC International Electrotechnical Commission

ISO International Standards Organization

MC/DC Modified condition/decision coverage

MCC Multiple condition coverage

OBT Original binary test

PDB TESSY Project Database (TESSY Version < 3)

PDBX TESSY Project Database (TESSY Version >= 3)

QTS Qualification Test Suite

RQMT Requirement

SCE Scenario Editor

SIL Safety Integrity Level

TBS TESSY Batch Script

TC Test Case

TD Test Definition

TESSY 5.1 Manual 565

A Abbreviations

TDB Test Database

TDE Test Data Editor

TEE Test Environment Editor

THAI TESSY Hardware Adapter Interface

TIE Test Interface Editor

TMB TESSY Module Backup

TS Test Step

UCE User Code Editor

XML Extensible Markup Language

566 TESSY 5.1 Manual

B Glossary

Batch Testing A testing procedure in which multiple test objects are executed automatically

one after each other without further user interaction.

Branch Coverage Is usually abbreviated “C1”. Roughly spoken: Branch Coverage reveals, if

all branches were executed, for example, an if-instruction has two branches, the then-

branch and the else-branch.

C1Test During a C1 test, each branch of the test object will be instrumented with a counter

to monitor, how often a branch of the program is run through.

Classification Tree The objective of the Classification Tree Method is to determine a suffi-

cient but minimum number of test cases. It is a systematic approach to test planning by

test case specifications and priorizations.

Code Coverage A test object is considered to consist of items like branches, conditions, etc.

Code coverage measures, how many of the items were exercised during the tests. This

number is related to the total number of items and is usually expressed in percent.

TESSY features C1 coverage (branch coverage) and C2 coverage (MC/DC: Modified

Condition)

Component Functions are functions that are callable from external.

Component Testing is the test of interacting test objects, i.e. interacting functions in the

sense of C. These functions can be a (single) calling hierarchy of functions, but we

will consider this mainly as unit testing. We consider as a component mainly a set of

functions that interact e.g. on common data and do not necessarily call each other.

Component testing then is testing of such a set of functions. The units do not need

to be in a calling hierarchy; they may only interact on data, like push() and pop() of

the abstract data type “stack”. A component according to this specification may also be

called a “module”, and its testing “module testing” respectively.

TESSY 5.1 Manual 567

B Glossary

Debugger A computer program that is used to test and debug other programs (the “target”

program). The code to be examined might alternatively be running on an instruction set

simulator (ISS), a technique that allows great power in its ability to halt when specific

conditions are encountered but which will typically be somewhat slower than executing

the code directly on the appropriate (or the same) processor. Some debuggers offer

two modes of operation - full or partial simulation, to limit this impact.

Enums Type of the C language specification which allows to define a list of aliases which

represent integer numbers.

Expected Values Values expected to be calculated by the test object. The result values are

checked against the expected values after the test run.

Fault Injection Fault injection is a technique to improve the coverage of tests by injecting

faults to test code paths. The TESSY fault injection feature provides means to test code

parts that are not testable using normal testing inputs e.g. endless loops, read-after-

write functionality or error cases in defensive programming.

Flow Chart A flow chart is a special type of diagram used to outline process, workflow or

algorithm. Various boxes represent the steps and their order is illustrated by connecting

the boxes with arrows.

Hysteresis Dependence of a system not just on its current environment but also on its past.

This dependence arises because the system can be in more than one internal state.

Interface Data Assign editor (IDA) If the interface elements of the test object have changed,

you can assign the new interface elements to the old. Your test data will be assigned

automatically.

Input Values Function parameters, global and external variables which have effect on the

behavior of the function.

Interface Description Information about the passing direction and type of interface ele-

ments (parameter, global variables and external variables). The interface description is

determined automatically by TESSY and is made visible / changeable in the TIE.

Integration Testing consists of a sequence of calls and can be considered either as unit

testing for a calling hierarchy of functions or as a component testing for a set of inter-

acting functions not necessarily calling each other. Component testing is integration

testing of the functions in the component.

568 TESSY 5.1 Manual

B Glossary

Modified Condition/Decision Coverage (MC/DC) MC/DC coverage takes the structure of

a decision into account. Each decision is made up from conditions, which are combined

by logical operators (and, or, not), n conditions require n+1 test cases. Roughly spoken,

to get 100 percent MC/DC for a decision, each condition in the decision requires a pair

of test cases, that

• differs in the boolean value for that condition, and

• has the same boolean value for all other conditions, and

• produces true and false in the outcome of the whole decision.

Metrics Calculation of the cyclomatic complexity (CC) is a common measure for complexity

control. It measures the complexity of source code on the basis of the control flow graph

and indicates the number of linearly independent paths through the code.

Module ATESSY module comprises primarily of the test object (in C a function in the sense

of C) and source files, compiler settings, interface description and test data. You can

pool modules in projects.

Module Testing is a semantic term for testing a collection of cooperating functions (units).

Output Values The same as an expected value in the TESSY context. Both terms are used

in equivalence within this manual. The output (repectively expected) values are evalu-

ated against the actual result values after the test run.

Project Root See explanatory box on page 61.

Regression Testing Regression testing is the repetitive running of already successfully com-

pleted test cases. The intention of regression testing is to verify that modifications and

enhancements to a test object do not break the already successfully completed tests.

Requirement Documented need of what a test should perform and important input for the

verification process. Requirements show what elements and functions are necessary

for the test.

Requirement Management Management of different types of requirements that need to be

covered by at least one test.

Requirement, Functional Describes the features, specific behavior, business rules and gen-

eral functionality that the proposed system must support.

TESSY 5.1 Manual 569

B Glossary

Requirement, Non-Functional Specifies criteria that can be used to judge the operation of

the test.

Script Editor TheTESSY Script Editor perspective provides textual editors supporting a test

scripting language for editing test cases, test data and usercode. A new internally man-

aged script file will be created for each test object and all test data and usercode can

be edited and saved.

Search Query Search definitions processed by a search engine.

Stub Function Piece of code used to stand in for some other programming functionality.

A stub may simulate the behavior of existing code (such as a procedure on a remote

machine) or be a temporary substitute for yet-to-be-developed code.

SystemTesting Test of the application (software or software and hardware) as a whole.

Test Data Editor (TDE) With the TDE you can enter the input values and expected values

for the test run.

TESSY Support File Contains information about test objects including data, compiler, project

settings etc. It helps the support to detect the cause of a problem. In section Contacting

the TESSY support it is explained how to create a TESSY Support File.

TESSY Hardware Adapter Interface (THAI) TESSY provides an hardware adapter interface

to enable stimulation and measurement of hardware signals as well as execution time

measurement during the unit test execution.

Test Case Element that encapsulates the abstract test definition, e.g. the specification and

description of a test, and the concrete test data managed within test steps.

Test Definition Describes a test to be performed on the test system in textual format. A test

definition abstractly describes the inputs and the expected outcome of a test and refers

to a list of requirements which shall be validated with this test.

Test Driver C-source files generated by TESSY for the test execution. These files are com-

piled and linked in order to build an application that prepares the input data, call the test

object and store the actual result data.

Test Environment Information about the test object, the compiler used, the target debugger

or emulator and more settings.

570 TESSY 5.1 Manual

B Glossary

Test Object The function to be tested.

Test Run One execution of a test object with the given test cases. The result of a test run is

stored within an XML result file that may be further processed by external tools.

Test Suite A collection of test objects with test scenarios and/or test cases that were created

to fulfill a certain test objective.

Test Interface Editor (TIE) With the TIE you can view all interface elements and review or

set the passing direction and/or other information of the interface elements.

Unit A single function, i.e. test object of a C program single function; the smallest reasonable

test object of a C program.

Usercode In the usercode you can enter C code, which is executed before or after test

cases/test steps during the execution of a test object.

Workspace The space at local disk where the TESSY application reads and writes data.

Place for configuration and temporary report data. Project data can be saved separately.

TESSY 5.1 Manual 571

C List of Figures

0.1 Core workflow of TESSY . xxi

0.2 The new Test Cockpit view in TESSY 5.1 . xxvii

0.3 Code Access example . xxviii

0.4 Hyper Coverage example . xxix

0.5 New Test Project view . xxx

0.6 Messages in the Test Cockpit view . xxx

0.7 New coverage reviews . xxxi

0.8 Editing the coverage review properties . xxxi

0.9 The new test summary report . xxxii

0.10 Editing the test execution settings . xxxiii

1.1 InstallAware Wizard . 3

1.2 Destination Folder . 4

1.3 TESSY Testarea Folder . 4

1.4 Start the installation . 5

1.5 Installing process of TESSY . 5

1.6 Installation is completed . 6

1.7 Starting TESSY 5.x . 6

1.8 Starting the key request . 7

1.9 License key request popup window . 8

1.10 Form for the license key request . 9

1.11 Configure menu of the license server . 11

1.12 Settings for a floating license in the configure menu 13

1.13 Dialog window to select license server in a network 14

1.14 License key check successful: this license key is correct 16

1.15 Uninstalling FLS and Shared installation files 17

1.16 The license info shows the possible number of days for checking out the license 23

1.17 Checking out the TESSY license . 24

1.18 Determine the amount of days for the check-out 24

1.19 Transmitting the license file to a computer with no FLS connection 25

2.1 Updating a project . 27

572 TESSY 5.1 Manual

C List of Figures

3.1 Initial equivalence partitioning for “ice warning” 39

3.2 Repeated equivalence partitioning for “ice warning” 40

3.3 A possible CT for “ice warning” . 41

3.4 Result of the CTM: tree (above) with combination table (below) 42

3.5 The problem “is_value_in_range” depicted graphically 43

3.6 The initial CT with three test-relevant aspects 44

3.7 The CT for is_value_in_range, 2nd step . 44

3.8 The CT for is_value_in_range, 3rd step . 45

3.9 A first specification for the range in the combination table 45

3.10 A second specification for the range in the combination table 46

3.11 The CT for is_value_in_range, 4th step . 47

3.12 The third range specification provokes a wrap-around 48

3.13 The completed CT for is_value_in_range . 49

3.14 The completed test case specification . 51

3.15 An alternative test case specification . 53

4.1 Path of the workspace . 58

4.2 Creating a new project . 59

4.3 Selecting a folder for the project root. 60

4.4 Creating a new project . 63

4.5 Context menu of the Select Project dialog . 65

4.6 Project identifier handling . 66

4.7 Project Example1 is created . 66

4.8 TESSY notifies, that a database update is necessary 69

4.9 A database update is necessary . 69

4.10 TESSY interface and its terminology . 70

4.11 Test Project view within the Overview perspective 72

4.12 Adding views to a perspective . 73

4.13 Move the views separately. To switch back, use “Reset”. 74

4.14 To switch back all positions of views and perspectives use “Reset Workbench”. . 74

4.15 Minimizing and maximizing views . 75

4.16 Maximized view with minimized views on the right and the restore-button on the

left . 75

4.17 Using the context menu with a right click. 77

5.1 Operational sequences in TESSY . 82

5.2 Creating the new project “Example1”. 84

5.3 New project “Example1” is created . 84

5.4 Test collection “Is_value_in_range” with an example folder and module 85

5.5 GNU GCC compiler is selected by default. 86

TESSY 5.1 Manual 573

C List of Figures

5.6 The source code of the C-Function to be tested 86

5.7 Adding the C-source file. 87

5.8 Analyzing the module, that is the C-source file. 88

5.9 The function of the C-source is displayed as child of the module. 89

5.10 Perspective TIE - Test Interface Editor . 90

5.11 The inputs and outputs are already defined . 91

5.12 Test Items view . 92

5.13 Three test cases were added in the Test Items view 92

5.14 Data is entered, test step turns yellow and test case is ready to run. 94

5.15 Entering data for test object is_value_in_range 96

5.16 The test cases are ready to test . 96

5.17 TDE after test run is_value_in_range . 97

5.18 Test results of is_value_in_range . 98

5.19 Selecting Branch and MC/DC Coverage for test run 99

5.20 Execute Test dialog while running the test . 99

5.21 The Coverage Viewer displays the coverage of is_value_in_range 100

5.22 Branch coverage is_value_in_range . 101

5.23 Decision coverage is_value_in_range . 102

5.24 Code section of the if branch of the first decision 103

5.25 Code section of the second decision . 104

5.26 Selecting a folder or creating a new folder for Test Details Reports 105

5.27 Content of the test report is_value_in_range . 106

5.28 The Test Report Options in the Preferences . 107

5.29 Importing a requirement . 109

5.30 Import dialog . 110

5.31 The new requirement document . 110

5.32 Changing the alias of the new requirement document 111

5.33 Comment for the initial revision of the commit 111

5.34 Linking test cases with requirements . 113

5.35 Test Definition view within TDE with linked requirement 114

5.36 Editing the settings of a Planning Coverage Report 114

5.37 Dialog of the settings for the Planning Coverage Report 115

5.38 Planning coverage report of the IVIR requirement document 116

5.39 Generating a Test Details Report . 117

5.40 Part of the generated test report of is_value_in_range 118

5.41 Creating an Execution Coverage Report . 119

5.42 Coverage Report of is_value_in_range . 120

5.43 Overview perspective after test run (with requirements) 122

5.44 Use the context menu to edit a source . 123

574 TESSY 5.1 Manual

C List of Figures

5.45 Editing the C-source file is_val_in_range.c . 124

5.46 Changed C-source file of is_value_in_range . 124

5.47 Adding a “delete” and “new” object . 125

5.48 Changed and new test objects of is_value_in_range 125

5.49 Remove the code for test object “deleted”. 126

5.50 Changed and new test objects of is_value_in_range 127

5.51 Changed, deleted and new test object of is_value_in_range 128

5.52 Use drag and drop in IDA . 129

5.53 Automatically generated tree with the root “is_value_in_range” in the CTE per-

spective . 130

5.54 Interface elements categorized into ”Inputs“ and ”Outputs“ 131

5.55 Child elements of an atomic type on the inputs side of the subtree 132

5.56 The outputs subtree . 132

5.57 CTE tree area and Test Data view . 134

5.58 Modify class elements . 136

5.59 Deleting elements . 137

5.60 Creating test cases in the CTE . 138

5.61 Automatically generated tree with 9 Test Cases 139

5.62 Defining test cases in the combination table of CTE 140

5.63 Completed table with all test cases for example “is_value_in_range” 140

5.64 Test data is displayed when selecting a test case in the combination table . . . 141

5.65 Test data displayed within TDE . 142

5.67 Example interior_light; ECU = Electronic Control Unit 144

5.68 Test Project view with new project interior_light 145

5.69 Selecting “Component” in the module properties 146

5.70 Scenario of a component test . 146

5.71 C-source code interior_light . 147

5.73 If a heartbeat function exists, timely behavior can be tested. 148

5.74 The initial interface . 149

5.75 Creating the stubs . 150

5.76 The final passing directions of variables used by init() 150

5.77 Test Project view with a component test . 151

5.78 Adding a description to test cases . 151

5.79 Inline editor of the view Test Data of ’Scenarios’ 152

5.80 View Test Data of ’Scenarios’ . 152

5.81 View Function Calls . 153

5.82 The names of the test cases are displayed in tabs of the view Work Task 153

5.83 Setting the Work Task . 154

5.84 Dragging the function onto the scenario . 155

TESSY 5.1 Manual 575

C List of Figures

5.85 set_sensor_door() is dragged to 30 ms simulated time 155

5.86 The parameter of set_sensor_door() is set . 156

5.87 Dragging the function . 156

5.88 Extending the time frame . 157

5.89 Setting the call “LightOff” and extending the time frame 158

5.90 Setting values to “ignore” . 159

5.91 Designing the second scenario . 160

5.92 The scenarios of the component “passed” the test 161

5.93 Importing a project . 162

5.94 Cloning the project. 163

5.95 Cloning the project. 163

5.96 The project root is displayed within the bottom line of TESSY. 164

5.97 Restoring the database . 165

5.98 Test Project view with the C++ project . 166

5.99 Adding synthetic test objects . 167

5.100 Adding synthetic variables . 168

5.101 Creating test cases for TDD . 168

5.102 Filling test cases for TDD . 169

5.103 Test specification report for TDD . 169

5.104 Implementation source file available for TDD . 170

5.105 Assignment of synthetic test objects to the implemented functions 170

5.106 Readily assigned TDD test cases . 171

6.1 Menu bar of TESSY . 177

6.2 Preferences menu of TESSY . 179

6.3 Static Analysis in the Preferences menu . 183

6.4 Pre-defined coverage instrumentation settings 184

6.5 Pre-defined coverage metrics settings . 185

6.6 Interface dictionary within the Preferences . 186

6.7 Editing variables in the interface dictionary . 187

6.8 Interface dictionary variable with warning icon 187

6.9 Overview perspective . 190

6.10 Test Cockpit View . 192

6.11 Test Project view within the Overview perspective 195

6.12 The new Test Project view behavior . 198

6.13 Revert the new default settings in the preferences 198

6.14 Change the default Test Cockpit settings in the preferences 199

6.15 Information provided within the Test Cockpit view 199

6.16 Editing the Task settings . 201

576 TESSY 5.1 Manual

C List of Figures

6.17 Executed task “Checklist” (Passed) in the Test Project view 202

6.18 Task “Checklist” linked to multiple requirements in Link Matrix 202

6.19 Function of the C-source displayed as child of the module 203

6.20 Multiple functions in the Elevator project . 204

6.21 Static code analysis in the Test Project view . 207

6.22 Select “Estimated Time” and “Actual Time” in the Preferences 209

6.23 Editing the actual time within the AT . 211

6.24 Create Variant Modules . 212

6.25 Selecting the parent module of the variant . 213

6.26 Test Project view with a module and a variant module 213

6.27 The variant module needs to be synchronized with the parent 214

6.28 Synchronizing a module with the parent . 215

6.29 Synchronize Module dialog . 216

6.30 Synchronizing Modules dialog . 216

6.31 Test cases and test steps that were inherited of a variant module 217

6.32 Add notes via content menu . 218

6.33 The Notes view in the Overview perspective . 219

6.34 Editing notes in the Notes view . 219

6.35 Test Execution Settings . 222

6.36 Additional Execution Types in the Test Execution Settings 223

6.37 Test Data Alternate Pattern and Test Data Pattern in the Properties view 224

6.38 Test Items view showing additional execution type failure 225

6.39 Additional execution type failure displayed in the TDE 226

6.40 Debugging option in the Test Execution Settings 228

6.41 Selecting execution types . 229

6.42 Coverage displayed within the Test Project view 229

6.43 Click on “Select Test Object Filter...” . 231

6.44 Filter Configuration Dialog . 231

6.45 A filter has been set but is currently disabled (filtered test objects appear faded). 232

6.46 The Filter is enabled, the affected test objects are hidden 232

6.47 Search filter function of the Test Project view . 233

6.48 Searching for “foo” . 233

6.49 Creating a report . 236

6.50 Test Details Report Settings dialog with default and optional settings 237

6.51 Test Overview Settings dialog with default and optional settings 238

6.52 Planning Coverage Settings dialog with default and optional settings 239

6.53 Execution Coverage Settings dialog with default and optional settings 240

6.54 Context menu “Define Batch Operation” . 241

6.55 Defining the batch operation . 242

TESSY 5.1 Manual 577

C List of Figures

6.56 Selecting all text objects . 242

6.57 Editing the settings of each batch operation . 243

6.58 Saving the settings of a batch operation as TBS file 244

6.59 Import settings of data import . 245

6.60 Export settings of data export . 246

6.61 Properties view . 246

6.62 The Compiler pane in the Sources tab of the Properties view 248

6.63 The Setting tab of the Properties view with module selected 250

6.64 The Linker Options tab of the Properties view 251

6.65 The Attributes tab of the Properties view . 251

6.66 Creating a new attribute . 252

6.67 Requirements Coverage view . 253

6.68 Test Items view . 254

6.69 First test case with one test step . 257

6.70 Selecting the test case generator . 258

6.71 A new test case generator is created . 258

6.72 A test step was generated and is ready to be executed 259

6.73 Selecting “Change Test Case Type to Normal” 260

6.74 The test case and test steps originally being generated 261

6.75 All test cases will be renumbered . 263

6.76 Test Results view . 264

6.77 Evaluation Macros view . 264

6.78 Console view . 265

6.79 Preference “Show console on error” . 267

6.80 Problems view with error message . 268

6.81 Variants View . 268

6.82 Assign a variant to a module . 269

6.83 Example test collection with base modules . 270

6.84 Create variant modules dialog: Filtering and selection 271

6.85 Test Project view with new variant modules . 272

6.86 Properties view variants tab for editing the parent module 273

6.87 Perspective C/C++ . 274

6.88 Opening the C/C++ perspective . 275

6.89 Editor view within the C/C++ perspective . 276

6.90 Opening the C/C++ perspective . 277

6.91 Project Explorer view within the C/C++ perspective 278

6.92 Outline view within the C/C++ perspective . 279

6.93 Requirement Management perspective . 282

6.94 RQMT Explorer view . 284

578 TESSY 5.1 Manual

C List of Figures

6.95 Double-clicking on a requirement opens the requirement editor 284

6.96 Example for the document structure within the RQMT Explorer view 286

6.97 Importing requirements . 287

6.98 Import dialog . 288

6.99 The new requirement document . 289

6.100 The asterix and a mouseover shows the status “new”. 290

6.101 Committing options . 290

6.102 Comment for the initial revision of the commit 291

6.103 After the commit . 291

6.104 Changing the alias of the new requirement document 292

6.105 The alias of a requirement is used in various views 293

6.106 Requirements List view . 293

6.107 Double-clicking on a requirement opens the Requirement Editor 294

6.108 Requirements Editor with test and a figure . 295

6.109 The first requirement was modified . 296

6.110 The first requirement has the version number 2.0 297

6.111 VxV Matrix view . 297

6.112 Test Means view . 298

6.113 Link Matrix view . 299

6.114 Adding elements to the Link Matrix view . 301

6.115 Adding Test Cases to the Link Matrix view in the Overview perspective 302

6.116 Link Matrix view with suspicious elements . 303

6.117 Suspicious Elements view . 304

6.118 Suspicious test object and test cases in the Overview perspective 306

6.119 Suspicious test object and linked modified requirements 306

6.120 Selecting the suspicious test case shows the modified requirement(s) 307

6.121 Comparing the versions of the requirement . 308

6.122 Attached Files view . 309

6.123 Attributes view . 310

6.124 Editing the requirement settings within the Attributes view 311

6.125 Changing the “Content Type” attribute to HTML 312

6.126 History view . 313

6.127 Differences view . 315

6.128 Related Elements view and its interrelations . 316

6.129 Related Elements view . 316

6.130 Related Elements view with Incoming and Outgoing Links 317

6.131 View Document Preview . 318

6.132 Newly opened Document Preview within the TIE perspective 319

6.133 HTML editing within the inline editor (WYSIWYG and plain HTML) 320

TESSY 5.1 Manual 579

C List of Figures

6.134 Requirements Coverage view with no linked requirements 321

6.135 Setting or disabling the options of auto refreshing 322

6.136 TEE - The Test Environment Editor perspective 325

6.137 Opening the Test Environment Editor (TEE) . 327

6.138 The All Environments view in the TEE perspective 329

6.139 The Project Environments view in the TEE perspective 330

6.140 Search result list with additional information . 330

6.141 Add an environment . 331

6.142 Attributes list within the Attributes view of the TEE 332

6.143 Comparing environments in the Attributes view 334

6.144 Integration of a hardware adapter (e.g. GAMMA) into theTESSY unit test execution339

6.145 XML data structure for the configuration THAI 340

6.146 Enable THAI in the Properties view . 341

6.147 Required THAI attributes in the Attribute View 342

6.148 Required THAI attributes in the TIE . 343

6.149 Required THAI attributes in the TDE . 344

6.150 Perspective TIE - Test Interface Editor . 345

6.151 Information of passing direction and type . 347

6.152 Interface view . 347

6.153 White arrow indicating further levels, black arrow when expanded 349

6.154 Resetting passing directions . 353

6.155 Setting the data format . 354

6.156 Array as pointer . 355

6.157 Create a stub function within the context menu 357

6.158 Create a new variable . 360

6.159 Example code snippet for alias names . 361

6.160 Show alias names preferences . 362

6.161 Defined external variables . 363

6.162 Undefining an external variable . 363

6.163 Undefined external variable . 364

6.164 Change external variable/function settings in the TEE 365

6.165 List of unused functions and variables in the TIE interface 367

6.166 Plot Definitions view . 368

6.167 Rename a new plot . 369

6.168 Plot Definitions menu . 370

6.169 Adding variables to a plot in the TDE . 370

6.170 Using plots in report . 372

6.171 CTE perspective . 373

6.172 Classification Tree editor related tool bar . 375

580 TESSY 5.1 Manual

C List of Figures

6.173 Classification Tree editor . 376

6.174 Creating a new classification with the context menu 380

6.175 Creating test cases in the test item list . 382

6.176 Setting marks in the Test Table . 383

6.177 Classification Tree with test data for class “Zero” 384

6.178 Test cases and test steps created within the CTE in the Test Item view of the

Overview perspective . 385

6.179 Settings in the CTE preferences . 386

6.180 Interface changed dialog . 387

6.181 An overview on the automated tree generation based on the function interface . 388

6.182 Automatically generated for the example is_value_in_range 388

6.183 The CTEX file attribute . 389

6.184 Remove Test Specification . 390

6.185 The CTE Preferences . 391

6.186 CTE class node with children associated with test data 392

6.187 Attach the selected interface object . 393

6.188 Detach the interface from an CTE note . 395

6.189 Showing data of a tree node . 396

6.190 Variable assignments in classification trees . 398

6.191 Attaching an interface element to a tree node 400

6.192 TIE icon of a CTE node . 400

6.193 Dependency defined between “range_length -> negative” and “position -> outside”402

6.194 Dependencies in the Properties view . 403

6.195 Dependency defined between “range_length -> zero” and “position -> inside” . 404

6.196 Composite dependency . 405

6.197 Composite dependency in the Properties view 406

6.198 TDE perspective . 407

6.199 Type information of the variable long range_start 410

6.200 Test Data view . 411

6.201 Test step 1.1 is selected and undefined values are highlighted in yellow 415

6.202 Test Data view showing selected test steps. 416

6.203 Clicking in the cell shows a combo box with the union components 419

6.204 Clicking in the cell shows a combo box with the available enum constants . . . 420

6.205 Pressing Ctrl + Space opens a list of available defines or enum constants . . . 421

6.206 Arithmetic expression . 421

6.207 Entering values as vector for an advanced stub 422

6.208 Choosing shown arrays . 423

6.209 Passing direction set to irrelevant . 425

6.210 Entering evaluation mode “unequal” within the inline editor 426

TESSY 5.1 Manual 581

C List of Figures

6.211 Generator test case 4 has a range value from 6 to 9 for parameter v1 429

6.212 Four test steps are generated for every value within the range “6 to 9”. 429

6.213 Selecting “Change Test Case Type to Normal” 430

6.214 The test case and test steps originally being generated. 431

6.215 Inherited value coloring within Test Data view 432

6.216 Test Definition view within TDE with linked requirement 435

6.217 Call Trace view . 436

6.218 Declarations/Definitions view . 437

6.219 Prolog/Epilog view . 438

6.220 Call sequence of the usercode parts . 439

6.221 TESSY provides default prolog/epilog on test object level to be inherited to test

cases and test steps . 441

6.222 TESSY allows Prolog/Epilog being inherited from test case or test object 442

6.223 Prolog/Epilog functions . 443

6.224 Editing C code . 444

6.225 Call the popup menu by pressing CTRL + space 445

6.226 Editing the evaluation macro templates . 445

6.227 Formatting of evaluation macro values . 447

6.228 Stub Functions view without contents . 448

6.229 Test execution direction using stub code . 448

6.230 TESSY Preferences: Abort on missing stub code 449

6.231 Stub Functions view with code using TS_CALL_COUNT macro 450

6.232 Stub Code Levels in the Usercode Outline view 451

6.233 Stub code examples on test object, test case and test step level 452

6.234 Automatically Generated Test Code . 452

6.235 Usercode Outline view . 453

6.236 Usercode Outline view showing inherited stub code 454

6.237 Usercode Outline view showing inserted stub code 454

6.238 Plots view . 455

6.239 The Script Editor view . 457

6.240 Element in the Outline view with related part in the Script Editor 459

6.241 Script Editor menu with auto completions . 460

6.242 Test Item view . 460

6.243 Status indicator example within the editor title 461

6.244 Merge dialog in the Compare view . 463

6.245 Tool bar icons in the Compare view . 463

6.246 Script example – Test object . 465

6.247 Script example – Test case . 466

6.248 Script example – Test step . 466

582 TESSY 5.1 Manual

C List of Figures

6.249 Script example – Inputs with arrays . 467

6.250 Script example – Outputs with structure . 467

6.251 Script example – Outputs with the definition of the active union component and

assigning of values . 468

6.252 Script example – Calltrace with two functions, the first one called twice 468

6.253 Script example – Epilog . 468

6.254 Perspective CV - Coverage Viewer . 469

6.255 Results of the EPC are displayed within the Test Project view 471

6.256 Coverage results within the CV perspective (component testing) 472

6.257 Test Project view within the CV perspective . 473

6.258 Called Functions view . 474

6.259 Flow Chart view . 475

6.260 Source code view on the bottom right of the Coverage View perspective 478

6.261 Condition view showing the sub flow coverage for one test case 482

6.262 Unreached code branch is marked blue . 484

6.263 Statement coverage . 485

6.264 Branch coverage . 487

6.265 MC/DC Coverage view . 488

6.266 MC/DC coverage . 489

6.267 Call Pair Coverage view with coverage results 490

6.268 The new Coverage Reviews view . 491

6.269 The Coverage Review Settings with predefinded list 492

6.270 Adding new coverage reviews . 493

6.271 Added coverage highlighted blue . 494

6.272 Set Valid in the context menu . 494

6.273 IDA perspective . 496

6.274 Compare view . 499

6.275 Use drag and drop in IDA . 500

6.276 Perspective SCE - Scenario Editor . 503

6.277 Component test . 505

6.278 Scenarios of a component test . 506

6.279 Interface of the scenarios . 507

6.280 Two component functions were set as work task within the Component Functions

view . 508

6.281 Work Task Configuration view . 509

6.282 Calculated cycle time . 510

6.283 Adding Function Calls . 512

6.284 The Test Data view of ’Scenarios’ . 513

6.285 Indicator icons for the test data . 513

TESSY 5.1 Manual 583

C List of Figures

6.286 A function is not called . 516

6.287 Fault injection in the Flow Chart view of the CV 517

6.288 Fault Injection not found . 518

6.289 Fault injection test case . 519

6.290 The Edit Fault Injection dialog . 520

6.291 Include list at the bottom of the Fault Injection dialog 521

6.292 Example of the Fault Injections report . 522

6.293 Mutation testing . 523

6.294 Mutation score . 523

6.295 Mutation testing within the Preferences . 524

6.296 Mutation Score within the Metrics in the Preferences 525

6.297 Activating Mutation testing in the Test Execution Settings 526

6.298 The Mutations view . 527

6.299 The Mutations view with excluded mutations . 528

6.300 Save Database dialog . 531

6.301 Files of the backup . 532

6.302 Restore Database dialog . 534

6.303 Directories and files within the database directory of the TESSY project 536

6.304 DOS command line shell . 540

7.1 Dialog for creating the TESSY Support File . 546

7.2 Dialog for logging settings . 547

7.3 Problems Log dialog . 549

7.4 Problems Log dialog with details and context menu for individual log entries . . 550

7.5 Problems view with context menu . 551

7.6 Support menu with problem menu items . 552

7.7 The Workspace Problems Log . 553

7.8 License key check unsuccessful: license key is incorrect for the host id 557

7.9 Variable passing set to “IRRELEVANT” . 558

7.10 Properties view with undefined const modifier 559

7.11 New Define popup window . 560

7.12 Edit the Attribute Value of the “Compiler Defines” 561

7.13 Add “const=” in the editor . 561

7.14 Save the “Compiler Defines” changed to “const=” 562

584 TESSY 5.1 Manual

D List of Tables

0.1 Where to find - matters of the several parts of the TESSY manual xviii

0.2 Font characters . xix

1.1 Functions of the FLM . 15

1.2 Information about licenses in use in the License Manager 23

4.1 File system and databases of TESSY . 58

4.2 Options of the Project Configuration dialog . 61

4.3 Tool bar options of the Select Project dialog . 64

4.4 Handling of projects with equal names . 67

4.5 Shortcuts and key functions . 79

5.1 Entering data for test object is_value_in_range 95

5.2 Meaning of the Test Coverage States . 121

6.1 File menu options . 178

6.2 Window menu options . 179

6.3 Preferences menu options . 182

6.4 Support menu options . 188

6.5 Help menu options . 189

6.6 Structure of the Overview perspective . 191

6.7 Tool bar icons of the Test Cockpit view . 193

6.8 View icons of the Test Cockpit view . 194

6.9 Status indicators of the Test Cockpit view . 194

6.10 Tool bar icons of the Test Project view . 196

6.11 View icons of the Test Project view . 196

6.12 Status indicators of the Test Project view . 197

6.13 Parser options and descriptions . 205

6.14 Predefined tokens of the available metrics . 210

6.15 Status indicators of inherited test cases or test steps 217

6.16 Test Execution Settings - Actions . 221

6.17 Test Execution Settings - Options . 221

TESSY 5.1 Manual 585

D List of Tables

6.18 Reports available within TESSY . 235

6.19 Import/export selections . 244

6.20 General tab of the Properties view . 247

6.21 Optional functions of the Sources tab of the Properties view 250

6.22 Tool bar icons of the Test Items view . 254

6.23 Column indicators of the Test Items view . 255

6.24 Status indicators of the Test Items view . 256

6.25 Status indicators for test cases and test steps created in the CTE 262

6.26 Various status indicators for test cases and test steps in the Test Items view . . 262

6.27 Tool bar icons of the Console view . 266

6.28 Icons of the content menu . 268

6.29 Structure of the C/C++ perspective . 276

6.30 Tool bar icons of the Outline view . 279

6.31 Structure of the Requirement Management perspective 283

6.32 Tool bar icons of the RQMT Explorer view . 285

6.33 Status indicators of the RQMT Explorer view 286

6.34 Possible formats of requirement sources . 289

6.35 Tool bar icons of the Requirements List view . 294

6.36 Tool bar icon of the Requirements List view . 294

6.37 Tool bar icons of the VxV Matrix view . 298

6.38 Tool bar icons of the Test Means view . 299

6.39 Tool bar icons of the Link Matrix view . 300

6.40 Status indicators of the Suspicious Elements view 300

6.41 Tool bar icons of the Suspicious Elements view 305

6.42 Tool bar icons of the Attached Files view . 309

6.43 Tool bar icons of the Attributes view . 311

6.44 Tool bar icons of the History view . 314

6.45 Tool bar icons of the Differences view . 315

6.46 Tool bar icons of the Document Preview . 319

6.47 Tool bar icons of the Requirements Coverage view 321

6.48 Indicators of the Planning tab . 322

6.49 Indicator of the Execution tab . 323

6.50 Structure of TEE . 327

6.51 Tool bar icons of the TEE . 328

6.52 Status indicator example . 333

6.53 Attribute fonts . 333

6.54 Contents, functions and storage location of configuration files 335

6.55 Meanings of flags in the attribute properties . 338

6.56 THAI attributes and their descriptions . 343

586 TESSY 5.1 Manual

D List of Tables

6.57 Structure of TIE . 346

6.58 Icons of the Interface view . 348

6.59 View icons of the Interface view . 348

6.60 Status indicators of the Interface view . 349

6.61 Classification sections of interface elements . 350

6.62 Possible passing directions of the interface elements 351

6.63 Default passing directions . 352

6.64 Icons of the Plot Definitions view . 368

6.65 Drag and drop handling with the Plots and Plot Definitions view 371

6.66 Structure of the CTE perspective . 374

6.67 Tool bar icons of the Classification Tree view . 377

6.68 Structure of Classification Tree view . 378

6.69 Icons of the Palette view . 379

6.70 Dependencies related icons in the Palette . 401

6.71 Structure of TDE . 408

6.72 Tool bar icons of the Test Data view . 412

6.73 Status indicators of the Test Data view . 413

6.74 Interface elements and icons of the Test Data view 414

6.75 Options of initializing values . 424

6.76 Initialization values for data types . 425

6.77 Evaluation modes . 427

6.78 Value assignments for pointers . 434

6.79 Tool bar icons of the Call Trace view . 437

6.80 Available types of evaluation macros . 446

6.81 Operators of evaluation macros . 447

6.82 Evaluation macro specifiers . 447

6.83 Structure of the Script Editor . 458

6.84 Tool bar icons of the Script Editor perspective 459

6.85 Possible status indicators of script states . 461

6.86 Tool bar icons of the Outline view in the Script Editor perspective 462

6.87 Structure of CV . 470

6.88 Tool bar icons of the Test Items view . 476

6.89 Elements of the Flow Chart view . 481

6.90 Sub flow coloring in the Flow Chart view . 482

6.91 Tool bar icons of the Coverage Reviews view 492

6.92 Structure of the IDA perspective . 497

6.93 Status indicators of test objects . 498

6.94 Status indicators of the Interface view of a component test 508

6.95 Example: possible evaluation results . 515

TESSY 5.1 Manual 587

D List of Tables

6.96 Fault injection related tool bar icons in the Flow Chart view of the CV 518

6.97 Indicated fault injection in the Test items view 519

6.98 Possible situations in the include list of the Edit Fault Injection dialog 522

6.99 Calling sequence for running batch tests . 539

6.100 Excerpt of the possible commands of the command line interface 541

7.1 Information to log and add to TESSY Support File 548

7.2 The context menu of the Problems Log dialog 551

7.3 The context menu of the Problems view . 552

7.4 Startup process problems . 555

7.5 License server problems . 556

588 TESSY 5.1 Manual

Index

Additional execution type, 223

Advanced Stub Functions, 358, 422

Advanced Stubs, 358, 422

All Environments view, 328

Arithmetic expressions, 420

Assigning changed Interface, 127

Attributes view, 310, 332

Automated tree generation, 387

Backup, 530

Location, 61

Basic knowledge, 28

Batch

Operation, 241

Test, 241, 567

Batch Test, 567

Branch Coverage, 567

Branch Coverage view, 101, 487

C Code

Editing, 444

Entering, 443

C-source file

Analyzing the, 87

Editing the, 122

C/C++, 274

C1 Test, 567

Call Pair Coverage, 490

Call Trace view, 436

Check-out License, 24

Classes

Creating, 379

Classification

Tree, 567

Tree Editor, 36, 130, 373, 375

Tree Method, 36

Creating, 379

Classification Tree, 567

Classification Tree Method, 28

Cloning a project, 64

Code Analysis, 206

Code Coverage, 567

Command Line Interface, 538

Committing Requirements, 290

Compare view, 127, 462, 498

Compiler

GNU GCC, 85

Component Functions, 567

Component Functions view, 508

Component Testing, 567

Composite Dependency, 404

Config File, 57

Configuration File, 57, 60, 334

Console view, 265

Constant Variables, 558

Context Menu, 77

Coverage

Branch Coverage, 226, 469, 567

Code, 567

Decision Coverage, 226, 469

Entry Point Coverage, 226, 469

Function Coverage, 226, 469

Instrumentation, 179, 226, 469

TESSY 5.1 Manual 589

Index

Measurements, 179, 469

ModifiedCondition/Decision Coverage,

226, 469, 568

Multiple Condition Coverage, 226, 469

Safety Standards, 179

Settings, 179, 226

Statement Coverage, 226, 469

Viewer, 469

Coverage Reviews view, 273, 491

Coverage Viewer, 100, 469

CPC, 490

CTE, 36, 130, 373

Classification Tree Editor, 375

Classification Tree Method, 36

Composite Dependency, 404

Creating test cases, 135

Dependencies, 401

Entering test data, 133

Practical exercise, 130

Tree elements, 131

CTM, 28, 567

CV, 100, 469

Cyclomatic Complexity (CC), 206

Data Format

Setting the, 353

Database

Create, 57

Location, 61

Update, 68

Debugger, 567

Decision Coverage view, 488

Declarations/Definitions view, 437

Delete

Compiler, 328

Environment, 328

Folder, 77

Module, 77

Target, 328

Test Case, 77

Dependencies, 401

Dialog Settings, 179

Differences view, 308, 314

Directories Settings, 179

DO-178B, 179

Edit Source, 122

Editing

Fault Injections, 517, 520

HTML of Requirements, 320

Script Content outside TESSY, 464

Script Files, 459

Scripts of Test Cases/Test Data/User-

code, 457

Editor view, 276

EN 50128, xxi

Entering

Test Data (TDE), 407

Test Data for Signals (THAI), 344

Entry Point Coverage (EPC), 471

Enums, 420, 568

Equally Named Projects, 66

Error handling, 549

Eval Macros, 444

Eval Modes, 426

Evaluation

Macros, 444

Modes, 426

Evaluation Macros view, 264

Examples, 80

Executing a Test, 220

Exercises, 80

Expected Values, 568

Exporting

Coverage Instrumentation Settings, 179

Test Data, 244

Expressions, 420

External Variables, 362

590 TESSY 5.1 Manual

Index

Fault Injection, 484, 517, 568

Fault Injection Candidates, 520

Fault Injection Test Case, 518

Fault Injections

Creating, 520

Report, 522

Fault Injections view, 517

File System, 57

Floating License

Check-out, 22

Manager, 22

Floating license, 12

Floating license server (FLS), 9, 14, 15

Flow Chart, 568

Flow Chart view, 101, 475, 517

FLS, 9, 14, 15

Format

Data (TIE), 353

Formats

Requirements, 288

Function Calls view, 153

Function Coverage (FC), 471

General handling, 56

Generating

Test Cases, 258, 428

Test Driver, 220

Generator Test Case, 258, 428

GNU GCC Compiler, 85

Heartbeat function, 146

Help

Menu, 188

with Problems, 555

Hysteresis, 568

IDA, 121, 496, 568

IEC 61508, xxi, 179

IEC 62304, xxi

Importing

Coverage Instrumentation Settings, 179

Requirements, 108

Test Data, 244

Inheritance of attributes, 328

Inherited Values, 431

Inline Mode, 418

Input Values, 568

Installation, 1, 3

Linux, 18

Windows, 2

Instrumentation Settings, 226

Integration Testing, 568

Interface

Changes, 121

Data Assign Editor, 121, 496

Description, 568

Hardware Adapter, 339

Interface Description, 568

Interface dictionary, 186

Internal Data Model, 457

ISO 26262, xxi, 179

License

Check-out, 24

No license server, 22

Node-locked, 9, 11, 12

Transmit, 25

License Key

File, 6

Request, 6

License Server, 9, 14, 15

Link Matrix view, 299

Linux, 18

Linux installation, 18

Location

Backup, 61

Database, 61

Project, 61

Maximum Criterion, 43

TESSY 5.1 Manual 591

Index

MC/DC, 568

MC/DC Coverage view, 102, 488

MCC Coverage view, 490

Menu Bar, 71

Merge Dialog, 462

Metrics, 206, 569

Migrating TESSY, 26

Minimum Criterion, 42

Module, 85, 569

Module Testing, 569

Multiple Stub Calls, 422

Mutation testing, 523, 527

Mutation view, 527

New in TESSY 5.1

Change based testing/Safety note, xxiii

Coverage Reviews view/New feature,

491

New features/Overview, xxvii

Test Cockpit view/New feature, 192

Test Project view/Changed behavior, 198

Node-locked license, 9, 11

Notes, 218, 236

Outline view, 278

Output Values, 569

Overview Perspective, 85, 190

Parser Options, 204

PDBX-File, 57

Perspective, 71

C/C++, 274

CTE, 373

CV, 100, 469

IDA, 121, 496

Overview, 85, 190

Requirement Management, 108, 282

SCE, 503

TDE, 93, 407

TEE, 85, 325

TIE, 90, 345

Perspective Bar, 71

Planning Coverage Report, 114

Plot Definitions view, 368

Plots view, 455

Pointers, 354, 433

Practical exercise

C++, 162

Component test, 143

CTE, 130

Interior light, 143

Is value in range, 82

Test driven development (TDD), 167

Unit test, 82

Practical exercises, 80

Project

Clone a, 64

Creating a, 59

Database, 57

Directory, 66

Equally named, 66

Location, 61

Root, 57, 87

Settings, 179

Template, 65

Project Explorer view, 278

Projects Environments view, 330

Prolog/Epilog view, 438

Properties view, 246, 346, 410

Quality Metrics, 206

Reference book, 172

Registration, 1, 6

Regression Testing, 121, 496, 569

Renumbering Test Cases, 263

Repeat Count, 439

Report

Creating a, 104, 234

Directories, 179

592 TESSY 5.1 Manual

Index

Execution Coverage, 234

Fault Injections, 522

Names, 179

Planning Coverage, 114, 234

Test Details, 104, 234

Test Overview, 234

Requirement, 569

Alias, 292

Committing, 290

Coverage, 320

Creating, 284

Editing, 296

Engineering, 284

Formats, 288

Functional, 569

HTML Editing, 320

Import, 287

Importing, 108

Linking of, 320

Management, 108, 281, 569

Non-Functional, 569

Renaming Document, 292

Sources, 288

Versioning of, 313

Requirement Editor view, 294

Requirement Management, 569

Requirements List view, 293

Restore, 530

Reuse, 121, 496

Root Project, 87

RQMT Explorer view, 108, 284, 289

Running a Test, 220

Save Data, 530

Saving Changes, 71

SCE, 503

Scenario Editor, 503

Script Content, 457, 464

Script Editor, 457, 570

Script Editor view, 457, 458

Script examples, 464

Script File, 457, 462

Script language, 464

Script Perspective, 459

Script States, 461

Script Status Indicators, 461

Scripting Language, 457, 464

Search Filter Function, 233

Search Query, 570

Setting Passing Directions, 350

Settings

Coverage, 179

Dialog, 179

Directories, 179

Project, 179

Report, 179

Setup of TESSY, 2

Shortcuts, 77

Solutions

Common problems, 544

Source

Analyzing the, 87

Editing the, 122

Root, 60

Source file

Adding a, 248

Statement Coverage view, 485

Status Bar, 76

Stub

Advanced, 358, 422

Creating, 358

Functions, 220, 356, 570

Stub Functions, 570

Stub Functions view, 448

Sub Flows, 480, 481

Support, 544, 545

Menu, 188

Support File, 545

TESSY 5.1 Manual 593

Index

Suspicious Elements, 303, 304

System Testing, 570

Target Passing, 354

Tasks, 201

TDE, 93, 407, 570

Technical requirements of TESSY, 2

TEE, 85, 325

All Environments view, 328

Attributes view, 332

Configuration File, 334

Projects Environments view, 330

Template Project, 65

TESSY

Interface Hardware Adapter, 339

Support File, 545

Test

Definition, 570

Driver, 570

Environment, 570

Environment Editor, 85, 325

Execution, 220

Interface Editor, 90, 345, 571

Regression, 569

Run, 220, 571

Suite, 571

System, 570

Test Case, 570

Generator, 258, 428

Renumbering, 263

Test Cases

Creating, 379

Test Cockpit view, 192

Test Data

Editor, 93

Exporting, 244

Importing, 244

Test Data Editor, 407, 570

Test Data view, 411

Test Definition, 570

Test Definition view, 435

Test Driver, 570

Test Environment, 570

Test Items view, 92, 254

Test Means view, 298

Test Object, 570

Changing Interface, 122

External Functions, 349

External Variables, 349

Global Variables, 349

Local Functions, 349

Test Project view, 85, 195

Test Results view, 264

Test Run, 571

Test Suite, 571

Testing effort estimation, 208

THAI, 339, 570

Configuration file, 340

TESSY InterfaceHardwareAdapter, 339

Functionality, 341

Theory, 28

TIE, 90, 345, 571

Tool Bar, 71

Tracking, 208

Troubleshooting, 544

Tutorial, 56, 80

Type Information, 346, 410

Type Modifier, 346, 410

Uninstallation, 16

Union, 418

Unit, 571

Unit testing, 28

Unused Functions, 366

Unused Variables, 366

Updating a database, 68

Usercode, 438, 453, 571

TS_CALL_COUNT, 450

594 TESSY 5.1 Manual

Index

TS_CURRENT_TESTCASE, 440, 450

TS_CURRENT_TESTSTEP, 440, 450

TS_REPEAT_COUNT, 440

Usercode Outline view, 453

UUID

Adding environments, 330

Variant Management, 211

Inherited Values, 431

Variants view, 268

Vector Values, 422

Version Control, 290, 295, 530

View, 72

All Environments, 328

Attached Files, 309

Attributes, 310

Branch (C1) Coverage, 101, 487

Call Trace, 436

Classification Tree, 375

Compare, 127, 462, 498

Component Functions, 508

Console, 265

Coverage Reviews, 273, 491

Decision Coverage, 488

Declaration/Definition, 437

Differences, 308, 314

Document Preview, 317

Editor, 276

Fault Injections, 517

Flow Chart, 101, 517

Function Calls, 153

History, 313

Interface, 90

Link Matrix, 299

MC/DC Coverage, 102, 488

MCC Coverage, 490

Mutation, 527

Outline, 278

Plot Definitions, 368

Plots, 455

Project Explorer, 278

Prolog/Epilog, 438

Properties, 85, 246, 346, 410

Related Elements, 316

Requirements Coverage, 320

Requirements Editor, 294

Requirements List, 293

Reset Position, 73

RQMT Explorer, 108, 284, 289

Script Editor, 457, 458

Statement (C0) Coverage, 485

Stub Functions, 448

Suspicious Elements, 304

Test Cockpit, 192

Test Data, 93, 411

Test Definition, 435

Test Items, 92, 254

Test Means, 298

Test Project, 85, 195

Test Results, 264

Usercode Outline, 453

Variants view, 268

VxV Matrix, 297

Work Task Configuration, 508

Windows installation, 2

Work Task Configuration view, 508

Work Tasks, 508

Work tasks, 154

Working with TESSY, 172

Workspace, 57, 571

TESSY 5.1 Manual 595

Razorcat Development GmbH
Witzlebenplatz 4
Germany, 14057 Berlin
tel: +49 (030) 53 63 57 0
fax: +49 (030) 53 63 57 60

e-mail: support@razorcat.com
internet: www.razorcat.com

mailto:support@razorcat.com
https://www.razorcat.com

	 Contents
	Preface
	About TESSY
	How to use this manual
	Subject matter
	Helpers
	Various Boxes - Important or extra information and warnings

	Safety Manual
	Core workflow and registration for safety information
	Verification and certification of TESSY
	Instrumentation for coverage measurement
	Change based testing
	Adaptation to target environment
	Command line interface (CLI)
	Operating limits

	New features in TESSY 5.0
	Linux support

	New features in TESSY 5.1
	Redesigned icons
	Test Cockpit view
	Code Access analysis
	Hyper Coverage
	Changed behavior of Test Project view
	Coverage Reviews
	Test summary report
	Change based testing

	1 Installation and registration
	1.1 Windows installation
	1.1.1 Technical requirements
	1.1.2 Setup
	1.1.3 Installation
	1.1.4 Registration
	1.1.5 Uninstallation

	1.2 Linux installation
	1.2.1 Technical requirements
	1.2.2 Setup
	1.2.3 Installation
	1.2.4 X server on headless systems
	1.2.5 Registration

	1.3 Using a license without connection to the license server (FLS)
	1.3.1 Checking-out the license for use on your local computer
	1.3.2 Using a license on a computer with no connection to the license server

	2 Migrating from TESSY 4.x to 5.x
	2.1 Changes as of TESSY v5.1
	2.2 Importing previous projects

	3 Theory: Basic knowledge
	3.1 Unit testing of embedded software
	3.1.1 Standards that require testing
	3.1.2 About unit testing
	3.1.3 Considerations for unit testing
	3.1.4 Methods for unit testing
	3.1.5 Conclusion

	3.2 The Classification Tree Method (CTM)
	3.2.1 General
	3.2.2 Steps to take
	3.2.3 Example is_value_in_range

	4 Tutorial: General handling
	4.1 Creating databases and working with the file system
	4.1.1 Creating a project database
	4.1.2 Creating, importing, cloning, editing, deleting a project
	4.1.3 Creating a template project
	4.1.4 Moving the project directory
	4.1.5 Handling with equally named projects
	4.1.6 Using a specific environment setting
	4.1.7 Updating the database

	4.2 Understanding the graphical user interface
	4.2.1 Menu bar
	4.2.2 Tool bar
	4.2.3 Perspectives and perspective (tool) bar
	4.2.4 Views
	4.2.5 Status bar

	4.3 Using the context menu and shortcuts
	4.3.1 Context menu
	4.3.2 Shortcuts

	5 Tutorial: Practical exercises
	5.1 Quickstart 1: Unit test exercise is_value_in_range
	5.1.1 Creating a test project
	5.1.2 Specifying the target environment
	5.1.3 Adding the test object and analyzing the C-source file
	5.1.4 Editing the test object interface
	5.1.5 Designing test cases
	5.1.6 Adding test cases and test steps
	5.1.7 Entering test data
	5.1.8 Executing the test
	5.1.9 Repeating the test run with coverage instrumentation
	5.1.10 Analyzing the coverage
	5.1.11 Creating a Test Details Report
	5.1.12 Repeating the test run with requirements
	5.1.13 Reusing a test object with a changed interface

	5.2 Quickstart 2: The Classification Tree Editor (CTE)
	5.2.1 The CTE tree elements
	5.2.2 Working with the CTE
	5.2.3 Entering test data
	5.2.4 Creating test cases

	5.3 Quickstart 3: Component test exercise interior_light
	5.3.1 Creating the test project
	5.3.2 The heartbeat function
	5.3.3 Preparing the test interface
	5.3.4 Adding test cases
	5.3.5 Editing data
	5.3.6 Configuring the work tasks
	5.3.7 Designing scenarios
	5.3.8 Executing the scenarios
	5.3.9 Evaluating the scenarios

	5.4 Quickstart 4: Exercise C++
	5.5 Quickstart 5: Test driven development (TDD)

	6 Reference book: Working with TESSY
	6.1 Menu Bar Entries: Setting up the basics
	6.1.1 File menu
	6.1.2 Window menu
	6.1.3 Static Analysis Settings
	6.1.4 Coverage Settings
	6.1.5 Metrics Settings
	6.1.6 Interface dictionary
	6.1.7 Support menu
	6.1.8 Help menu

	6.2 Overview perspective: Organizing the test
	6.2.1 Structure of the Overview perspective
	6.2.2 Test Cockpit view
	6.2.3 Test Project view
	6.2.4 Properties view
	6.2.5 Requirements Coverage view
	6.2.6 Test Items view
	6.2.7 Test Results view
	6.2.8 Evaluation Macros view
	6.2.9 Console view
	6.2.10 Suspicious Elements view
	6.2.11 Problems view
	6.2.12 Variants view
	6.2.13 Coverage Reviews view

	6.3 C/C++: Editing the C-source
	6.3.1 Opening the C/C++ perspective
	6.3.2 Structure of the C/C++ perspective
	6.3.3 Editor view
	6.3.4 Project Explorer view
	6.3.5 Outline view
	6.3.6 Properties view
	6.3.7 Console view

	6.4 Requirement management
	6.4.1 Structure of the Requirement Management perspective
	6.4.2 RQMT Explorer view
	6.4.3 Requirements List view
	6.4.4 Requirement Editor view
	6.4.5 Validation Matrix view / VxV Matrix view
	6.4.6 Test Means view
	6.4.7 Link Matrix view
	6.4.8 Suspicious Elements view
	6.4.9 Attached Files view
	6.4.10 Attributes view
	6.4.11 History view
	6.4.12 Differences view / Reviewing changes
	6.4.13 Related Elements view
	6.4.14 Problems view
	6.4.15 Document Preview
	6.4.16 Requirements Coverage view

	6.5 TEE: Configuring the test environment
	6.5.1 Starting the TEE perspective
	6.5.2 Structure of the TEE
	6.5.3 All Environments view
	6.5.4 Projects Environments view
	6.5.5 Attributes view
	6.5.6 Configuration files
	6.5.7 Adjusting enabled configurations

	6.6 THAI: TESSY Hardware Adapter Interface
	6.6.1 The THAI Configuration file
	6.6.2 Environment Editor (TEE) Settings for THAI functionality
	6.6.3 Signals within the interface
	6.6.4 Entering test data for signals

	6.7 TIE: Preparing the test interface
	6.7.1 Structure of the TIE perspective
	6.7.2 Test Project view
	6.7.3 Properties view
	6.7.4 Interface view
	6.7.5 Plot Definitions view

	6.8 CTE: Designing the test cases
	6.8.1 The basic idea
	6.8.2 Structure of the CTE perspective
	6.8.3 Test Project view
	6.8.4 Properties view
	6.8.5 Outline view
	6.8.6 Classification Tree editor
	6.8.7 Test Data view
	6.8.8 Dependencies in CTE

	6.9 TDE: Entering test data
	6.9.1 Structure of the TDE perspective
	6.9.2 Test Project view
	6.9.3 Test Results view
	6.9.4 Evaluation Macros view
	6.9.5 Test Items view
	6.9.6 Properties view
	6.9.7 Test Data view
	6.9.8 Test Definition view
	6.9.9 Call Trace view
	6.9.10 Declarations/Definitions view
	6.9.11 Prolog/Epilog view
	6.9.12 Stub Functions view
	6.9.13 Usercode Outline view
	6.9.14 Plots view
	6.9.15 Plot Definitions view

	6.10 Script Editor: Textual editing of test cases
	6.10.1 Structure of the Script Editor perspective
	6.10.2 Script Editor related Icons of the main tool bar
	6.10.3 Editing test objects, test cases and test steps
	6.10.4 Script states
	6.10.5 The Script Editor Outline view
	6.10.6 Synchronization with the internal model
	6.10.7 Merging script contents
	6.10.8 Importing and exporting script contents
	6.10.9 Importing and exporting script contents
	6.10.10 Script examples

	6.11 CV: Analyzing the coverage
	6.11.1 Structure of the CV perspective
	6.11.2 Instrumentation for coverage measurements
	6.11.3 Test Project view
	6.11.4 Called Functions view/Code view
	6.11.5 Flow Chart view
	6.11.6 Fault injection
	6.11.7 Statement (C0) Coverage view
	6.11.8 Branch (C1) Coverage view
	6.11.9 Decision Coverage view
	6.11.10 MC/DC Coverage view
	6.11.11 MCC Coverage view
	6.11.12 Call Pair Coverage view
	6.11.13 Coverage Reviews view
	6.11.14 Coverage Report views

	6.12 IDA: Assigning interface data
	6.12.1 Structure of the IDA perspective
	6.12.2 Status indicators
	6.12.3 Test Project view
	6.12.4 Properties view
	6.12.5 Compare view

	6.13 SCE: Component testing
	6.13.1 Creating component tests
	6.13.2 Preparing the test interface
	6.13.3 Configuring the work tasks
	6.13.4 Designing the test cases
	6.13.5 Editing scenarios
	6.13.6 Executing the scenarios

	6.14 Fault injection
	6.14.1 Managing fault injections in the Coverage Viewer
	6.14.2 Creating fault injection test cases
	6.14.3 Creating and editing fault injections in the Coverage Viewer
	6.14.4 Fault injections within the report

	6.15 Mutation testing
	6.15.1 Preferences
	6.15.2 Test execution settings
	6.15.3 Mutation view

	6.16 Backup, restore, version control
	6.16.1 Backup
	6.16.2 Restore
	6.16.3 Version control

	6.17 Command line interface
	6.17.1 Starting TESSY in headless mode
	6.17.2 Invoking ``tessycmd.exe''
	6.17.3 Usage of ``tessycmd.exe''
	6.17.4 Commands
	6.17.5 Execution and result evaluation
	6.17.6 Headless operation
	6.17.7 Example: DOS script

	7 Troubleshooting
	7.1 Contacting the TESSY support
	7.1.1 Creating the TESSY Support File
	7.1.2 Tipps for a better TESSY Support File

	7.2 Enhanced error handling
	7.2.1 Problems Log dialog
	7.2.2 Problems view
	7.2.3 Opening external problem logs using the Support menu

	7.3 Solutions for common problems
	7.3.1 TESSY does not start or gives errors when starting
	7.3.2 License server does not start or gives errors
	7.3.3 Working with constant variables
	7.3.4 Dealing with too long project paths

	Appendix
	A Abbreviations
	B Glossary
	C List of Figures
	D List of Tables
	Index

