
Razorcat Technical Report

Date: 23 January 2014
Status Released

© Razorcat Development GmbH 2007. All rights reserved. Confidential and proprietary document. This document and all information herein is the sole property of
Razorcat Development GmbH. No intellectual property rights are granted by the delivery of this document or the disclosure of its content. This document shall not be
reproduced or disclosed to a third party without prior written consent of Razorcat Development GmbH. This document and its content shall not be used for any purpose
other than that for which it is supplied.

Razorcat Technical Report CCDL Whitepaper.doc Page 1 of 14

Razorcat Development GmbH  Witzlebenplatz 4  14057 Berlin  Tel. +49 (0) 30-536 357-0  Fax +49 (0) 30-536 357–60
Geschäftsführer: Dipl.-Inform. Michael Wittner  Amtsgericht Berlin-Charlottenburg HRB 65326  www.razorcat.com

CCDL Whitepaper

Summary:

This document describes the test definition language CCDL and its application
for a simple example..

Reference/Related Documents:

Notes:

Keywords CCDL, TRM, ITE

CCDL Whitepaper

Date 23 January 2014
Status Released

Razorcat Technical Report CCDL Whitepaper.doc Page 2 of 14

Razorcat Development GmbH  Witzlebenplatz 4  14057 Berlin  Tel. +49 (0) 30-536 357-0  Fax +49 (0) 30-536 357–60
Geschäftsführer: Dipl.-Inform. Michael Wittner  Amtsgericht Berlin-Charlottenburg HRB 65326  www.razorcat.com

Revision History

 Name Date Issue

Author Michael Wittner 10. May 2010 01

 Michael Wittner 23. January 2014 02

Execution flow visualization added

CCDL Whitepaper

Date 23 January 2014
Status Released

Razorcat Technical Report CCDL Whitepaper.doc Page 3 of 14

Razorcat Development GmbH  Witzlebenplatz 4  14057 Berlin  Tel. +49 (0) 30-536 357-0  Fax +49 (0) 30-536 357–60
Geschäftsführer: Dipl.-Inform. Michael Wittner  Amtsgericht Berlin-Charlottenburg HRB 65326  www.razorcat.com

Table of Contents

1 Introduction .. 4

2 Application Area of CCDL .. 5

3 State of the Art System Testing ... 5

4 The CCDL Testing Process ... 6

4.1 Advantages of CCDL .. 6

4.2 CCDL Compiler .. 7

4.3 CCDL Editor/Debugger .. 8

5 CCDL Sample ... 8

5.1 Requirements of the Sample System ... 9

5.2 Definition of Tests ... 9

5.3 Initial Conditions of the Test ... 9

5.4 Test Steps .. 10

5.5 Test Preparation ... 11

5.6 Test Execution Result .. 11

5.7 Requirements Coverage Result ... 12

6 CCDL Features ... 12

6.1 Chronological Test Execution ... 12

6.2 Trigger Functions for event-based Test Control ... 13

6.3 Automatic Unit Conversion ... 13

6.4 Multi-Parameter Access ... 13

6.5 Monitoring of Parameters ... 13

6.6 Checks for Parameter Change ... 13

6.7 Parameter Checks within defined Time Frames ... 13

6.8 Requirement Links ... 14

6.9 Automatic Test Evaluation .. 14

CCDL Whitepaper

Date 23 January 2014
Status Released

Razorcat Technical Report CCDL Whitepaper.doc Page 4 of 14

Razorcat Development GmbH  Witzlebenplatz 4  14057 Berlin  Tel. +49 (0) 30-536 357-0  Fax +49 (0) 30-536 357–60
Geschäftsführer: Dipl.-Inform. Michael Wittner  Amtsgericht Berlin-Charlottenburg HRB 65326  www.razorcat.com

1 Introduction

Verification of safety critical systems requires full coverage of system under tests
requirements. This results in many and complex test scenarios, to be executed and
evaluated. Manual execution of such tests is error prone and not efficiently, though
automated testing of the system under test (SUT) is required.

To improve the test coverage while using less human resources, there is a need for a
tool, which allows to define test scenarios including the expected system reactions in
a simple and unambiguous way, automatically run the test scenarios, automatically
evaluate and report the behavior of the system under test after each test run.

The check case definition language (CCDL) is an approach to automate system level
testing by providing a high level script language that allows defining test stimulations
and expected results in a human readable form. The CCDL bridges the gap between
a purely textual description of a test and the compilation into a test stimulation
program required by any automated test execution tool. A well defined interface to
the underlying test execution engine allows execution of CCDL written tests on any
test tool that provides the required functionality.

Moreover, CCDL is embedded into a complete testing process starting from the
definition of tests, linking tests to system requirements, executing tests and review as
well as reporting of test results as shown in the figure below (the V model
development process).

T
e
st P

re
p
a
ra

tio
n T

e
st

 E
va

lu
a
tio

n
 /
 R

e
p
o
rt
in

g

RequirementsRequirementsRequirements

Test Execution

Qualification

Test Report

RequirementsRequirementsTest Cases

Requirements

Evaluation
Requirements

Evaluation
Requirements

Evaluation

CCDL Test

Scripts
CCDL Test

Scripts
CCDL Test

Scripts

RequirementsRequirementsTest Evaluation

RequirementsRequirementsTest Runs/ Results

Coverage

Analysis

Coverage

Analysis

C. A.

T
e
st P

re
p
a
ra

tio
n T

e
st

 E
va

lu
a
tio

n
 /
 R

e
p
o
rt
in

g

RequirementsRequirementsRequirements
RequirementsRequirementsRequirements

Test ExecutionTest Execution

Qualification

Test Report

RequirementsRequirementsTest Cases
RequirementsRequirementsTest Cases

Requirements

Evaluation
Requirements

Evaluation
Requirements

Evaluation

Requirements

Evaluation
Requirements

Evaluation
Requirements

Evaluation

CCDL Test

Scripts
CCDL Test

Scripts
CCDL Test

Scripts

RequirementsRequirementsTest Evaluation
RequirementsRequirementsTest Evaluation

RequirementsRequirementsTest Runs/ Results
RequirementsRequirementsTest Runs/ Results

Coverage

Analysis

Coverage

Analysis

C. A.

CCDL Whitepaper

Date 23 January 2014
Status Released

Razorcat Technical Report CCDL Whitepaper.doc Page 5 of 14

Razorcat Development GmbH  Witzlebenplatz 4  14057 Berlin  Tel. +49 (0) 30-536 357-0  Fax +49 (0) 30-536 357–60
Geschäftsführer: Dipl.-Inform. Michael Wittner  Amtsgericht Berlin-Charlottenburg HRB 65326  www.razorcat.com

The CCDL testing process provides open interfaces to test management solutions
and it is already integrated into the Integrated Test Environment (ITE) from Razorcat
Development GmbH which supports the whole testing life cycle according to the V
model mentioned above.

The CCDL language provides means to link individual expected reactions of the
system under test to the respective system requirements. Such traceability of test
results to system requirements and vice versa is one of the most important issues
arising while testing safety critical systems according to aerospace, automotive or
medical standards.

2 Application Area of CCDL

The CCDL language is applicable for system testing where the SUT is seen as a
black box with defined input and output interfaces. These interfaces are the only
points of stimulation and check for expected system reactions. The internal behavior
of the system is unknown and only described by more or less detailed system
requirements and maybe other kind of documentation. These requirements are the
base for all testing and though every test stimulation and checks for expected
reactions within the CCDL test script may be linked directly to the system
requirements.

When stimulating a system under test using CCDL, it may be possible to apply
internal coverage measurements (e.g. branch or decision coverage of the software
that controls the system) but this is not the scope of CCDL. Such measures may be
applied additionally.

3 State of the Art System Testing

System testing requires a test bench hardware which is connected to the SUT and
which provides means for measurement and control of the SUT (normally called
Hardware-in-the-Loop, HIL) as well as software that controls the test execution. The
hardware part is out of scope of the CCDL, because the CCDL may be executed on
any suitable hardware platform. Moreover the software necessary to control the test
execution is the essential target of the CCDL testing process.

Typical HIL systems provide a programming language for control of the testing
process (e.g. C or Python). Such programming languages are designed for
programming but they are not appropriate for testing. The control flow of a real-time
program is completely different to the control flow required for conducting real-time
tests. Writing tests in programming languages requires high level programming skills,
which is not the primary scope of a tester.

Programming languages used for testing have the following disadvantages:

- programmer required, not a tester

- a lot of programming overhead even for simple tests

- poor documentation (program code is hard to understand)

- hard to review

- programmer needs a comprehensive understanding of both SUT and test
bench

CCDL Whitepaper

Date 23 January 2014
Status Released

Razorcat Technical Report CCDL Whitepaper.doc Page 6 of 14

Razorcat Development GmbH  Witzlebenplatz 4  14057 Berlin  Tel. +49 (0) 30-536 357-0  Fax +49 (0) 30-536 357–60
Geschäftsführer: Dipl.-Inform. Michael Wittner  Amtsgericht Berlin-Charlottenburg HRB 65326  www.razorcat.com

- no automated test evaluation

- no automated test reporting

Some HIL systems provide a graphical flow chart based programming environment.
Such flow charts come a little closer to what the CCDL provides, but there is still
programming required to implement the control flow for the flow chart elements.

Flow charts have the following disadvantages:

- Hiding information relevant for testing within flow chart elements
(properties)

- Hierarchical structuring on different levels is complicated to understand

- Reporting and documentation is complicated

4 The CCDL Testing Process

4.1 Advantages of CCDL

When using CCDL, the test engineer does not need a comprehensive understanding
of the test bench. He can focus on the SUT and define the test scenario with a
dedicated, unambiguous test language, which is independent of the test bench. The
test language is “high level”, easy to learn and intuitive to read, so that the CCDL
written test scenarios can be used as test documentation. Test execution, evaluation
and reporting can be done fully automatic. Open interfaces allow an integration of the
CCDL into multiple test benches and test management process tools of different
types.

Another challenge of system testing is the handling of both the complexity of the test
bench as well as the complexity of the SUT itself. The test engineer should have
knowledge about the SUT whereas the test bench is just a verification tool for him.
But in most cases, the tester also needs to have deep insight into the test bench
functionality and SUT specific internal behavior. The CCDL introduces a concept of
splitting the tester’s work into writing of test cases (in CCDL) and on the other side
programming of test bench or SUT specific CCDL user functions like shown within
the figure below.

CCDL Whitepaper

Date 23 January 2014
Status Released

Razorcat Technical Report CCDL Whitepaper.doc Page 7 of 14

Razorcat Development GmbH  Witzlebenplatz 4  14057 Berlin  Tel. +49 (0) 30-536 357-0  Fax +49 (0) 30-536 357–60
Geschäftsführer: Dipl.-Inform. Michael Wittner  Amtsgericht Berlin-Charlottenburg HRB 65326  www.razorcat.com

Execution on test bench

CCDL

Compiler

automatic transformation

Test Case

(CCDL)

Test Bench

and A/C

Specific

Functions

Test Script

(Test-Bench

Specific)

This concept allows concurrent engineering of test cases and test bench specific
functions. Also the skills required for either writing of tests or programming of CCDL
user functions are different. A few highly skilled engineers are required to define and
program the user functions while the testers need only testing skills. They may
concentrate on the test of the SUT while specific testing functionality is encapsulated
by CCDL user functions.

4.2 CCDL Compiler

The CCDL provides means to create test procedures with powerful language
features while remaining readable and understandable by non-testers. It is possible
to create sophisticated tests with only a few lines of CCDL statements.

The compiler creates C code programs running on any test execution environment
(adaptable by a small abstraction layer). Standard features of test benches like relay
matrixes, resistor banks and additional measurement devices are comfortably
embedded into the CCDL language and may be applied directly using dedicated
CCDL statements.

Benefits of the CCDL language:

 For test engineers: Easy to learn with minimum training effort

 For audit purposes: Easily understandable even without training

 Chronological as well as event based test stimulation

 Monitoring of expected system reactions asynchronously as well as
synchronously to test stimulation

 Automatic test evaluation and failure reporting

CCDL Whitepaper

Date 23 January 2014
Status Released

Razorcat Technical Report CCDL Whitepaper.doc Page 8 of 14

Razorcat Development GmbH  Witzlebenplatz 4  14057 Berlin  Tel. +49 (0) 30-536 357-0  Fax +49 (0) 30-536 357–60
Geschäftsführer: Dipl.-Inform. Michael Wittner  Amtsgericht Berlin-Charlottenburg HRB 65326  www.razorcat.com

Technical Features:

 Virtual (state) machine controls test execution in real time

 Abstraction layer allows execution on different test benches

 Specific functionality of the test bench is available via high-level CCDL
functions

4.3 CCDL Editor/Debugger

This additional package provides a syntax controlled editor for CCDL procedures. It
is seamlessly integrated into the test management (ITE) client and allows linking of
requirements to individual CCDL statements (e.g. expected reactions of the system
under test).

The package also includes a debugger for step by step execution and playback of
recorded test runs. The user may review and play back recorded test runs based on
the input and output data logged during test execution.

5 CCDL Sample

The following very simple actuator system of an airplane wing part shall illustrate the
functionality of the CCDL. The system consists of a controller that controls the
movements of a wing part depending on the lever setting (i.e. the lever is the input
from the operator). The motor drives the wing part and the sensor measures speed
and position of the system. The controller will be the SUT in the following example.

LeverLever

Motor

Sensor

Fault

Indicator

Fault

Indicator

ControllerController

Break

CCDL Whitepaper

Date 23 January 2014
Status Released

Razorcat Technical Report CCDL Whitepaper.doc Page 9 of 14

Razorcat Development GmbH  Witzlebenplatz 4  14057 Berlin  Tel. +49 (0) 30-536 357-0  Fax +49 (0) 30-536 357–60
Geschäftsführer: Dipl.-Inform. Michael Wittner  Amtsgericht Berlin-Charlottenburg HRB 65326  www.razorcat.com

The system shall be verified against the requirements given within the specification of
the system. The default position of the lever is 0 and it may be moved to positions 1
and 2. This drives the motor until the wing part comes into the respective position.

5.1 Requirements of the Sample System

As an excerpt from the system specification, the following requirements for the
controller were selected and they shall be verified by means of system testing:

- RQMT:0815-1 The motor shall operate the system at a speed of 1000
rpm

- RQMT:4711-1 If any overspeed (more than 1100 rpm) is detected, the
system shall stop the motor and activate the break within 100 ms. A fault
warning shall be indicated.

5.2 Definition of Tests

The next step in testing is the definition of test scenarios for the SUT. We will
consider the following test definition for the overspeed tests:

- Reset the system to initial state and positions

- Set the lever position to position 1

- Wait until the motor has reached the normal speed (refer to requirement
RQMT:0815-1)

- Simulate a sensor failure: Set the sensor to an offset of 110 rpm above the
originally measured value (refer to requirement RQMT:4711-1)

- Check that the system gets stopped after 100 ms (refer to requirement
RQMT:4711-1)

This test describes the steps to be taken in order to prepare the SUT for the test as
well as the stimulation, error injection and the expected reaction of the SUT. The
CCDL script will implement this test and provide means to automatically check the
expected system reactions.

5.3 Initial Conditions of the Test

One of the prerequisites for the test are the initial conditions and settings of the SUT
as well as the test bench. The CCDL provides the Initial Condition block to specify
this initial setup for the test:

CCDL Whitepaper

Date 23 January 2014
Status Released

Razorcat Technical Report CCDL Whitepaper.doc Page 10 of 14

Razorcat Development GmbH  Witzlebenplatz 4  14057 Berlin  Tel. +49 (0) 30-536 357-0  Fax +49 (0) 30-536 357–60
Geschäftsführer: Dipl.-Inform. Michael Wittner  Amtsgericht Berlin-Charlottenburg HRB 65326  www.razorcat.com

The controller is specified as CTRL whereas the test bench environment model is
specified as TES. Parameters of both systems are initialized within the initial
conditions block.

5.4 Test Steps

The stimulation of the test and the check for expected system reactions is carried out
within test steps. The Test definition above may be tested with the CCDL
implementation shown below

This test step stimulates the system, waits for the system to operate properly, then
injects the failure condition and finally checks for the expected reactions of the SUT.

CCDL Whitepaper

Date 23 January 2014
Status Released

Razorcat Technical Report CCDL Whitepaper.doc Page 11 of 14

Razorcat Development GmbH  Witzlebenplatz 4  14057 Berlin  Tel. +49 (0) 30-536 357-0  Fax +49 (0) 30-536 357–60
Geschäftsführer: Dipl.-Inform. Michael Wittner  Amtsgericht Berlin-Charlottenburg HRB 65326  www.razorcat.com

This simple example already outlines the powerful language features of CCDL: The
trigger expression denotes a certain point in time where the respective condition is
fulfilled. Based on this trigger, the stimulation (the when statement) and expected
reaction checks (the within statement) will be carried out at point in time where the
SUT is in the desired state for testing. Time intervals (T1 .. T1 & 100 [ms]) using
trigger expressions and offsets allow precise expected reaction checks in real time.
The expected reaction operator => is applicable for boolean expressions. It checks
whether the value changes exactly once from the negated boolean value to the
boolean value specified in the expression (within the given time interval).

5.5 Test Preparation

Before executing the test, the CCDL script has to be compiled into an executable
application that shall run on the test bench. The CCDL compiler produces C-Code
that is executable on the test bench (through the CCDL runtime module and based
on the adaptable interface library). It may be integrated into the normal compilation
process of the test bench.

5.6 Test Execution Result

During execution of the test, the initial condition settings will be applied and all
specified test steps will be executed one after another. Test steps have an optional
timeout period which will abort the test if the execution time exceeds the specified
time.

The CCDL development environment provides a visualization of the execution flow
after the test is finished. Below is an example showing the temporal behavior of the
test execution and the results of the expected reaction evaluations. It also shows the
point in time where the trigger T1 event condition was reached which in turn caused
the subsequent manipulation and checking statements to be processed.

On successful test completion, the CCDL real time code generates an automatic
evaluation result log file. This log file contains the procedure text and the
passed/failed results of all expected reactions specified within the CCDL procedure.

Below is an excerpt of the result log file for the sample CCDL.

CCDL Whitepaper

Date 23 January 2014
Status Released

Razorcat Technical Report CCDL Whitepaper.doc Page 12 of 14

Razorcat Development GmbH  Witzlebenplatz 4  14057 Berlin  Tel. +49 (0) 30-536 357-0  Fax +49 (0) 30-536 357–60
Geschäftsführer: Dipl.-Inform. Michael Wittner  Amtsgericht Berlin-Charlottenburg HRB 65326  www.razorcat.com

5.7 Requirements Coverage Result

Another result file contains the list of requirements attributed to the expected reaction
checks of the CCDL procedure. A cumulated result value will be calculated for each
requirement depending on the assigned expected reaction results. These
automatically calculated requirement results will be propagated into the test
management system (ITE) for further analysis. They may also be used for the later
requirement based evaluation of the logged data of the test run.

6 CCDL Features

6.1 Chronological Test Execution

Each statement of the CCDL is executed one after another. Statements lasting
longer than one time frame remain active until they are finished. This ensures

CCDL Whitepaper

Date 23 January 2014
Status Released

Razorcat Technical Report CCDL Whitepaper.doc Page 13 of 14

Razorcat Development GmbH  Witzlebenplatz 4  14057 Berlin  Tel. +49 (0) 30-536 357-0  Fax +49 (0) 30-536 357–60
Geschäftsführer: Dipl.-Inform. Michael Wittner  Amtsgericht Berlin-Charlottenburg HRB 65326  www.razorcat.com

chronological execution of the CCDL statements. Only statements activated by
trigger expressions are executed in parallel to the normal chronological control flow.

6.2 Trigger Functions for event-based Test Control

Trigger expressions allow event based stimulation or checks within the CCDL test
control flow. The trigger is defined by a logical expression that is evaluated each time
frame starting from the point in time where the CCDL control flow reached the trigger
statement.

The CCDL statements within a trigger expression are executed when the trigger is
activated (in parallel to the normal CCDL control flow). This may never happen if the
trigger condition always fails.

6.3 Automatic Unit Conversion

Each parameter has its defined unit (given through the compiler configuration), but
the tester may assign values using different units. The assigned values will then be
converted automatically to the unit required for the parameter.

6.4 Multi-Parameter Access

A special naming convention allows accessing several parameters within a single line
of code. Using the identifier “abc[1;2;3]def” denotes the following list of identifiers:
abc1def, abc2def, abc3def. This shortens the CCDL script when testing safety critical
SUTs where always a number of redundant parameters have to be stimulated or
checked.

6.5 Monitoring of Parameters

The monitoring statement allows checking of parameters for the whole test execution
or within a test step.

6.6 Checks for Parameter Change

Checking that a parameter changes its value from one value to another within a
given time frame requires only a single line of CCDL code: The CCDL statement
“expect param_x => 0” checks that the parameter changes its state exactly once
from 1 to 0.

6.7 Parameter Checks within defined Time Frames

Parameter checks may be carried out for a certain period of time. CCDL may check
that a parameter condition is valid:

- for the whole time period (“during” statement)

- at least once within the given time frame (“within” statement)

The time period for both statements may be defined using trigger expressions
(combined with time offsets) which allows precise event based checks of parameter
values.

CCDL Whitepaper

Date 23 January 2014
Status Released

Razorcat Technical Report CCDL Whitepaper.doc Page 14 of 14

Razorcat Development GmbH  Witzlebenplatz 4  14057 Berlin  Tel. +49 (0) 30-536 357-0  Fax +49 (0) 30-536 357–60
Geschäftsführer: Dipl.-Inform. Michael Wittner  Amtsgericht Berlin-Charlottenburg HRB 65326  www.razorcat.com

6.8 Requirement Links

The CCDL language allows attributing requirement links to each expected system
reaction. These requirement links will be processed by the CCDL compiler in order to
create a reference list of requirements. Further processing within a test management
system provides means to trace the CCDL evaluation results back to the
requirements for later test evaluation and review.

6.9 Automatic Test Evaluation

Each expected system reaction within the CCDL procedure is logged and
summarized within the automatically calculated test evaluation result after the test is
finished. This test result provides immediate feedback to the tester after each test
run.

	1 Introduction
	2 Application Area of CCDL
	3 State of the Art System Testing
	4 The CCDL Testing Process
	4.1 Advantages of CCDL
	4.2 CCDL Compiler
	4.3 CCDL Editor/Debugger

	5 CCDL Sample
	5.1 Requirements of the Sample System
	5.2 Definition of Tests
	5.3 Initial Conditions of the Test
	5.4 Test Steps
	5.5 Test Preparation
	5.6 Test Execution Result
	5.7 Requirements Coverage Result

	6 CCDL Features
	6.1 Chronological Test Execution
	6.2 Trigger Functions for event-based Test Control
	6.3 Automatic Unit Conversion
	6.4 Multi-Parameter Access
	6.5 Monitoring of Parameters
	6.6 Checks for Parameter Change
	6.7 Parameter Checks within defined Time Frames
	6.8 Requirement Links
	6.9 Automatic Test Evaluation

